1142

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 10, NO. 6, OCTOBER 2008

Video Streaming for Mobile Video Surveillance

Giovanni Gualdi, Andrea Prati, Member, IEEE, and Rita Cucchiara, Member, IEEE

Abstract—Mobile video surveillance represents a new paradigm
that encompasses, on the one side, ubiquitous video acquisition
and, on the other side, ubiquitous video processing and viewing,
addressing both computer-based and human-based surveillance.
To this aim, systems must provide efficient video streaming with
low latency and low frame skipping, even over limited bandwidth
networks. This work presents MoSES (MObile Streaming for
vidEo Surveillance), an effective system for mobile video surveil-
lance for both PC and PDA clients; it relies over H.264/AVC
video coding and GPRS/EDGE-GPRS network. Adaptive control
algorithms are employed to achieve the best tradeoff between low
latency and good video fluidity. MoSES provides a good-quality
video streaming that is used as input to computer-based video
surveillance applications for people segmentation and tracking. In
this paper new and general-purpose methodologies for streaming
performance evaluation are also proposed and used to compare
MOoSES with existing solutions in terms of different parameters
(latency, image quality, video fluidity, and frame losses), as well as
in terms of performance in people segmentation and tracking.

Index Terms—H.264 coding, mobile video surveillance, video
streaming.

1. INTRODUCTION

HANKS to the spread of both mobile devices and wireless
T network accessibility, Ubiquitous Multimedia Access
(UMA) has become a very common topic within the multimedia
community during the last few years. Research centers and
telecom providers address new, smart and efficient solutions
for the ubiquitous access to multimedia data and in particular
videos, from everywhere with mobile devices (laptops, PDAs or
last generation cellular phones). Possible applications of such
technology include consumer entertainment and digital TV
broadcasting, video conferencing, telemedicine and telemanip-
ulation, military applications, and remote video surveillance.
All these applications share several technological challenges.
On the one side, videos pose serious problems in terms of both
amount of data transferred on the network and computational
resources. On the other side, mobile devices and UMA sce-
nario require accessibility through different and often limited
wireless networks, either 802.11 WiFi, 3G networks such as
HSPA (High Speed Packet Access) and UMTS (Universal
Mobile Telecommunications Service), or even 2/2.5G networks

Manuscript received November 19, 2007; revised March 27, 2008. Current
version published October 24, 2008. The work was supported in part by Project
FREE SUREF of the Italian MIUR Ministry (2007-2008). The associate editor
coordinating the review of this manuscript and approving it for publication was
Prof. Marco Roccetti.

G. Gualdi and R. Cucchiara are with the Dipartimento di Ingegneria dell’In-
formazione, University of Modena and Reggio Emilia, 41100 Modena, Italy
(e-mail: giovanni.gualdi @unimore.it; rita.cucchiara@unimore.it).

A. Prati is with the Dipartimento di Scienze e Metodi dell’Ingegneria, Uni-
versity of Modena and Reggio Emilia, 42100 Reggio Emilia, Italy (e-mail: an-
drea.prati @unimore.it).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TMM.2008.2001378

such as GPRS (General Packet Radio Service) or EDGE-GPRS
(Enhanced Data rates for GSM Evolution). These conflictual
requirements—high data volumes and limited resources—em-
phasize the need for efficient codecs for both downloading and
streaming applications. In the case of video data, the goal is to
allow UMA services to maintain a sufficient quality for human
users. Nevertheless, in some emerging applications the data
quality and the compression factors must be evaluated against
the more restrictive requirements of “non-human users”, i.e.,
software that processes and interprets the received data.

This paper will focus on these applications and in particular
on mobile video surveillance: with this term we refer to the
broad class of emerging real-time video surveillance applica-
tions where the computational load is not completely in charge
of a fixed platform directly connected to the camera. In mobile
video surveillance all the issues related with video grabbing,
processing, interpretation and dispatching of multimedia data
become more challenging due to the presence of mobile plat-
forms, either in the transmitting or the receiving side, wirelessly
interconnected.

The meaning of the term “mobile” is quite hazy and might as-
sume different meanings, depending on the context: for example
it could be an installation not constrained to remain in a fixed
location, a moving device, a portable device (such as handhelds
and laptops), or finally a battery-powered device. However, in
multimedia the term “mobile” is generally related to the connec-
tivity. Accordingly, here we assume that the reference mobile
video surveillance system is provided with an ubiquitous wire-
less connectivity (either on the server, on the client or on both).
Conversely the term “fixed” will be used to consider systems
with wired connectivity.

A typical example of architecture for mobile video surveil-
lance is the three-layer architecture of Fig. 1. The first layer
(transmitting side or encoder) is devoted to encode the video
provided by either a live source (camera) or a stored reposi-
tory of videos. The encoded video is sent to the second layer
(receiving side or decoder) through a wireless radio channel
that provides the widest possible coverage. The received video,
once decoded, is processed by the third layer (video surveillance
system); it can be a traditional human-based system consisting
of human operators analyzing the videos or a computer-based
system with automatic processing that extracts moving objects
and recognizes interesting events.

This is not the only possible architecture for mobile video
surveillance. The growth of smart cameras makes more feasible
and interesting the shifting of some processing tasks on-board
on the local encoder side. In general, part of the computer-based
video surveillance algorithms could be implemented on the first
layer with the twofold advantage of reducing the transmission
bandwidth and working with uncompressed images. However,
our focus will be kept on a first layer that performs video en-
coding and streaming only, demanding any surveillance tasks to

1520-9210/$25.00 © 2008 IEEE

Authorized licensed use limited to: UNIVERSITA MODENA. Downloaded on November 4, 2008 at 05:05 from IEEE Xplore. Restrictions apply.

GUALDI et al.: VIDEO STREAMING FOR MOBILE VIDEO SURVEILLANCE

STATIC CAMERA

MOVING CAMERA

ENCODER

REPOSITORY
] FIRST LAYER
E ! | |
| ~
B Human-based |
s l EDAs: | o Video |
- [DECODER ‘ @ || ™ Surveillance |
3 A
| = H C ter-based |
omputer-bpase
: Fixed / Mobile PC / | SMart phone | | : Video |
Mobile PDA-like | Surveillance
| device | | A :
! i
| SECONDLAYER| PC || THIRDLAYER ||

Fig. 1. Generic architecture for mobile video surveillance.

the further steps: this solution remains the most flexible since no
specific assumptions are made on the surveillance applications
implemented on the third layer. In our work the first layer will
be embodied by a standard PC architecture, being aware that
standard video encoders have often embedded hardware imple-
mentation.

Despite the general architecture, we will focus on the most
challenging case in which the video source is provided by a
live camera and acquired on demand. There are many examples
of interesting applications; in the case of mobile-to-fixed sce-
narios: a video surveillance system with PTZ moving network
cameras over wireless communication, a camera mounted on a
police car patrolling a city area, a robot equipped with a camera
for monitoring disaster areas, a security camera used in a con-
struction site that moves over on daily basis; any of these might
stream the live videos to a control center; vice versa the case of
fixed-to-mobile could be a police officer viewing on his PDA
the video collected by a moving/static camera installed inside a
building (or by a camera mounted on a moving vehicle for the
mobile-to-mobile case).

In this work we propose a streaming system, called MoSES
(MObile Streaming for vidEo Surveillance), that effectively im-
plements the described general purpose architecture for mo-
bile video surveillance. MoSES supports video streaming in dif-
ferent conditions, aiming at low-latency transmission over lim-
ited-bandwidth network. Additionally, the video stream is pro-
vided with a sufficient quality to be correctly analyzed by both
human-based or computer-based video surveillance layers. To
this aim we propose an optimization of the streaming process
with an adaptive control of the streaming parameters.

MoSES is built upon open-source software components.
The reason is twofold. First, the availability of the complete
source code permits modifications and optimization at any
level. Second, most of open-source software or components

1143

TABLE I
REQUIREMENTS FOR THE SYSTEM. “4/” AND “-”” INDICATE “REQUIRED” AND
“NOT REQUIRED,” RESPECTIVELY

Video Surveillance
Requirement Human-based | Computer-based
1 | Ubiquitous accessibility V4 vV
2 Low latency v IV
3 High image quality preferable IV
4 Video fluidity preferable -
5 | No frame skipping / loss -
6 High frame rate - preferable

can be cross-compiled on different architectures and/or oper-
ating systems with just specific adjustments: cross-architecture
software is required since the client side of MoSES is meant to
work not only on PCs but also on PDAs.

Evaluating real-time video streaming is nor simple neither
clearly defined. In this paper we propose a new methodology
with an effective image analysis step to provide comparative
performance evaluation over four key parameters, namely la-
tency, image quality, video fluidity and frame losses. Eventually,
we compare results achieved with MoSES and other streaming
systems over such parameters and also over moving object seg-
mentation and tracking for mobile video surveillance.

The rest of the paper is structured as follows. In the next
section we define the system requirements for effective
human-based and computer-based video surveillance. Then,
in Section III, we review some commercial and scientific ap-
proaches to video streaming and related works on mobile video
surveillance. Section IV presents the full details of MoSES.
Experimental results (Section VI), were gathered using the
methodologies described in Section VII. Conclusions are
drawn in Section VIL.

II. SYSTEM REQUIREMENTS

Mobile video surveillance calls for live video streaming in
order to dispatch an online view of the controlled scene. Beyond
this basic feature, there are other requirements (listed in Table I)
that need to be considered in order to define a successful mobile
video surveillance system.

Given the requirement #1 the video coding must be suffi-
ciently adaptable to different wireless network supports and
not only to the ones with large bandwidth (such as WiFi or
UMTS/HSPA), that do not still offer ubiquitous coverage. In
this work GPRS/EDGE-GPRS network has been selected as
reference mobile data service, since it provides wide coverage
over the European territory. This is merely an implementation
choice that does not compromise the generality of the system
which can provide video streaming over any IP-based network.
Given the effective bandwidth available for EDGE-GPRS and
GPRS connections, MoSES will be tested on 80 and 20 kbps,
respectively. Moreover, in mobile video surveillance a multiple
delivery of video sources could be requested, therefore tests on
20 and 5 kbps will be performed to simulate a four cameras
video delivery. The requirement #2 of low latency is necessary
because surveillance systems should exhibit high reactivity
to changes in the scene. Moreover, mobile video surveillance
needs high image quality (requirement #3) and good video
fluidity (requirement #4). Both are preferable for a satisfac-
tory human-based surveillance and the first is mandatory in

Authorized licensed use limited to: UNIVERSITA MODENA. Downloaded on November 4, 2008 at 05:05 from IEEE Xplore. Restrictions apply.

1144

computer-based surveillance to allow a correct video analysis
and scene recognition. This process is very sensitive to noise
and changing conditions and it is, thus, greatly influenced
by the coding artifacts or the quantization introduced by the
video compression. Consequently, the lower the bandwidth
available, the greater the video compression, the more the noise
affecting the correct video analysis. The most basic steps of
video processing within the considered surveillance context
are [1]: segmentation of moving objects, object tracking and
object analysis. While the last step is largely dependent on
the goal of the application, segmentation and tracking tasks
are very general: a performance degradation in segmentation
and tracking compromises the whole automatic surveillance
system. In the case of a static camera, the segmentation step is
often based on background suppression techniques [2], which
compare the actual pixel values with the corresponding values
in the (statistical) model of the static scene, i.e., the background
model. It is evident that the frame compression can signifi-
cantly affect this step by changing pixel values and making
a sophisticated background model useless. For this reason
requirement #3 is crucial. The tracking step is typically based
on object-to-track association on a frame basis and tracking
algorithms usually assume a fixed frame rate for effective status
predictions. Therefore the requirement #5 (no frame skipping)
becomes necessary. Finally, the search area for a tracked object
in a new frame is generally proportional to the displacement
that the object can have between two consecutive frames: thus
requirement #6 (high frame rate) prevents an excessively-en-
larged search area.

Most of the listed requirements are necessary for the majority
of UMA services and the last-generation commercial streaming
systems typically fulfill them just in part. Our system MoSES,
on the other hand, is specifically designed to fulfill them in full.
It is based on H.264/AVC (MPEG-4 part 10) [3]-[5], suitably
devoted to work on low-capacity networks by means of sev-
eral improvements to make the streaming adaptive. H.264/AVC
guarantees a better tradeoff between image quality and band-
width occupation with respect to MPEG-2 and MPEG-4 part 2
[5].

III. RELATED WORKS

A. Video Streaming Solutions and Components

Several video streaming solutions handle all the steps of the
process, namely video grabbing, encoding, network streaming
and video playback. Two examples of popular off-the-shelf
suites are Microsoft Windows Media® and Real Networks®,
based on Helix technology [6]. The encoding layers of such
systems are intended to provide streaming server capabilities,
i.e., to handle intensive video broadcasts. They require strong
processing platforms and/or server-oriented operating sys-
tems. For example, Windows Media Streaming Server runs on
Windows Server OS only. The main goal of these proprietary
solutions is to provide massive access to both live and stored
video resources for entertainment purposes, rather than ubig-
uitous, uni-cast video streaming as required for surveillance
purposes. For this reason their latency is usually rather high
(as shown in Section VI), being in conflict with requirement
#2. Moreover, since the typical users are non-technical practi-
tioners, their settings are often pretty limited mainly in terms

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 10, NO. 6, OCTOBER 2008

of video coding and network streaming. Regardless of such
considerations, their performance in mobile video surveillance
working conditions are not negligible. We measured the overall
streaming performances of both Windows Media and Real
Networks, since they both provide a video player for PC and
PDA. Numerical results will be discussed in Section VI.

Skype® probably represents the most popular freeware tool
for live multimedia streaming, addressing audio and video. The
overall performance of this system is very interesting, though
it has some limitations to be applied for mobile video surveil-
lance. In particular, the settings flexibility is even coarser than
the aforementioned tools since almost everything is automati-
cally handled: for instance, grabbing source, frame size and rate
and video bitrate are not adjustable. This approach makes the
system very easy to be used for audio/video calls but also very
rigid and certainly not flexible enough to be used for our goals.
Moreover, according to the methodologies that will be presented
in Section V, analytical latency measurement becomes unfea-
sible in such conditions. Skype is meant for audio streaming,
that cannot be disabled in favor of video, producing a bandwidth
waste that becomes a critical issue on radio mobile connections.
Finally, the video player is currently implemented in the PC ver-
sion only.

On the side of open-source software, VideoLan Client (VLC)
is probably the most renowned tool available. Differently from
all previous examples, VLC is designed for research or free use
and not for commercial purposes; it provides a very flexible and
refined setup, that reaches the lowest level of details for video
grabbing, coding and network streaming. It supports many video
compression standards (including H.264) and streaming tech-
nologies. Anyway the system shows strong limitations that con-
flict with many of the requirements of our project: as reported in
Section IV-B, video latency (requirement #2) can be kept pretty
low only at the cost of strong video quality degradation. Re-
garding bandwidth usage, the H.264 video bitrate control is nei-
ther very strict nor optimized. For example, H.264 streaming is
allowed only on MPEG TS (Transport Stream) encapsulation:
the work in [7] demonstrates that this is a drawback, since using
the stack MPEG-TS/UDP/IP introduces more than double the
overhead than using the stack RTP/UDP/IP. Finally, the VLC
parameter control of the H.264 video coding is not precise since
it gives access to the full palette of parameters but cannot handle
them correctly: artifacts and strong image quality degradation
are introduced as soon as the setup deviates from the standard
conditions in order to be optimized for low bandwidths.

An alternative solution is to design and develop an optimized
system that specifically targets mobile video surveillance, using
existing components where suitable.

The most complex blocks in the video streaming pipeline
are video encoding and decoding. Given the choice for H.264
codec, we compared existing encoding engines according to
their computational performances and parameters flexibility.
Performance is required since the encoding must be performed
in real time and conversely H.264 can be computationally very
demanding if configured on high encoding profiles; flexibility
is needed to tune the encoder for addressing different needs,
such as high encoding speed or high image quality.

JM [8] is the H.264 reference software: it is open source,
completely flexible and modifiable, but has very limited compu-
tational performance. Conversely, Intel Integrated Performance

Authorized licensed use limited to: UNIVERSITA MODENA. Downloaded on November 4, 2008 at 05:05 from IEEE Xplore. Restrictions apply.

GUALDI et al.: VIDEO STREAMING FOR MOBILE VIDEO SURVEILLANCE

Primitives (Intel IPP) [9] is a suite of libraries that offers
broad digital signal processing algorithms, including also video
coding and specifically H.264. Such libraries are optimized but
not open source and can be executed on Intel processors only.
X.264 [10] is today one of the open source H.264 encoder with
best performance and highest completeness over the H.264
standard and for these reasons it was chosen as the foundation
block in our first layer of Fig. 1.

Regarding the choice for H.264 decoder, the performance
issue becomes very restrictive since we want to address not only
standard x86 architectures, but also CPUs with limited com-
putational power, e.g., ARM architectures of PDAs. The same
considerations mentioned on the JM and Intel IPP H.264 en-
coders are valid for their decoder tools. >From the wide variety
of other decoders, many being open source, the choice is lim-
ited if we consider only those that can be compiled on both PC
and PDA. Our selected decoder is based on FFMPEG [11], be-
cause of performance and ability to handle most of the H.264
coding profiles; it does not provide a ready-to-use PDA version,
but since it is open source it can be appropriately modified for
that. This library has the additional advantage to offer a network
down-streaming layer implemented for many different proto-
cols.

B. Streaming for Mobile Video Surveillance

Video streaming has reached its peak of interest in the scien-
tific community in the last ten years. A good survey paper on
this topic has been written by Lu in 2000 [12]. It reports and
discusses the relevant signal processing issues and proposes
possible solutions. Regarding video streaming, researchers have
addressed the problem from several different perspectives. For
example, one of them addresses the allocation of computational
resources for a server with multiple requests [13]. Another
set of papers focuses on the system architecture, in terms of
both models of communication (as in [14], where the analysis
is based on Real Networks products, but without considering
low-capacity networks) and data synchronization (as in the case
of [15] where an inter-vehicle communication for live video
streaming is considered, even though based on 802.11 WiFi
networks and thus not suitable for general mobile video surveil-
lance). Some works proposed systems for video streaming over
low-capacity networks, such as GPRS. For instance, Lim et al.
in [16] introduced a PDA-based live video streaming system on
GPRS network. The system is based on MPEG-4 compression
and contains several computational optimizations for working
on a PDA. It can achieve a frame rate of 21 fps at the encoder
side and 29 fps at the decoder side for transmitting a QCIF
(176 x 144) video at 128 kbps. However, their system drops
to 2-3 fps when transmission is over GPRS. Moreover, no
information on the latency of the system is provided. The work
in [17], instead, solves the problem of transmitting real-time
videos over GPRS by using frame skipping. Chuang et al. in
[18] deals with adaptive playout for video streaming over sim-
ulated 3G networks: a statistical model on both departure and
arrival processes is built in order to avoid buffer underflows and
preserve playout smoothness. Even if the work does not deal
clearly with latency measurements and supposes an additional
payload for timing data exchange, the idea of adapting video
playout to optimize the buffer management will be used also in
our work.

1145

Mobile video surveillance has been envisioned in the litera-
ture as either classical video streaming with an extension over
wireless networks, with no processing at remote side but only re-
mote control by a human operator [19]-[21], or as a special case
of distributed wireless sensor networks in which one type of sen-
sors corresponds to video sensors [22]. Moreover, most of these
works do not address low-capacity networks. A very seminal
work has been published in 1999 by P. Mahonen [23]. This work
analyzes the key issues of mobile video surveillance, such as
networking requirements and digital image transmission. More-
over, similarly to what has been done by us, the author evaluated
the effect of error-prone transmission and coding artifacts on
the final video surveillance applications (specifically, intruder
alarming and object recognition). However, mainly due to the
immaturity of the technology in 1999, no effective proposal
to video streaming for mobile video surveillance over low-ca-
pacity network is really proposed in the paper. Lam et al. pre-
sented a very interesting work [1] with a final objective similar
to the one of this work. However, in their case frame skipping
is functionally employed to fit in the low-bandwidth require-
ment with an intelligent filtering of frames—bandwidths close
to 5 kbps are sustainable only through a very aggressive frame
skipping. As aforementioned, this complicates the tracking task;
moreover, it requires to move part of the computational load on
the local side of the camera.

IV. SYSTEM PROPOSAL

The basic architecture of MoSES follows the scheme of
Fig. 1. In this section each layer will be detailed. Section IV-A
describes the video encoder layer (developed for PC-based
hardware only). The decoding layer has been designed in two
different versions, depending on the computational resources
of the client, namely PC-based (Section IV-B) and PDA-based
(Section IV-C). The techniques used for computer-based video
surveillance are based on SAKBOT (Statistical And Knowl-
edge-Based Object Tracker) [24], which is a system for moving
object detection and tracking.

A. Video Encoder Layer

The typical encoder layers of streaming systems are made
of three basic blocks (video grabbing, encoding and network
streaming) plus further controlling steps. Our encoder layer
aims to provide high flexibility in the control of video source
and compression and to keep the latency and the frame-loss
rate at lowest levels (Fig. 2). The following peculiar aspects
of the architecture were specifically designed to attain such
objectives:

— multithreaded processing and pipeline: video grabbing,
encoding and network streaming are handled by dedi-
cated threads decoupled through circular buffers (Fig. 2).
Having asynchronous threads optimizes the processing
since the execution of each one is basically independent
of the others; this allows the implementation of a pipeline
that reduces latency compared to simple serial processing.
The original X.264 source code was modified for this
purpose;

— low buffer occupancy: buffering is necessary to avoid video
data losses due to thread decoupling; as drawback, it in-
troduces some latency and for this reason the application

Authorized licensed use limited to: UNIVERSITA MODENA. Downloaded on November 4, 2008 at 05:05 from IEEE Xplore. Restrictions apply.

1146

X.264 encoding parameters:
- frame size / frame rate

- bitrate control

- codec profiling

User inputs

(eI Network

Video input Grabber Sireamer Stream
Module Module output
(Native C++) e Eyg
Type of video input:
RAW RAW T £ vid toik:
-live video YUV4:2:0 H264 ype:olvideo oUIpUL
- AVl video file Circular Circular
- RAM memory buffer - |1~ buffor - raw H.264 UDP stream
mapped files (MMF) \ X264 Encoder /. \Z\ - raw H.264 file
Module - AVl video file
- RAM MMF

? I\S((Native C++) Q />/

GUl/controlling layer (C# .NET)
Operating System (Windows XP)

Fig. 2. Functional scheme of the video encoder layer.

is tuned to keep buffers at the lowest occupancy. The best
way to achieve this is to set the grabbing frame rate equal
to (or slightly lower than) the average encoding frame rate;
the buffering between encoder and network streamer is not
crucial since the second task, being light weighted, man-
ages to keep the buffer always close to zero occupancy;

— UDP streaming: raw H.264 encoded stream is seamlessly

forwarded to the network streamer that packetizes it into
UDP datagrams of fixed byte size. UDP is preferable with
respect to TCP due to its prioritized dispatch over the net-
work in case of congestion, but this comes at the cost
of possible datagram loss. Nevertheless, thanks also to
the Automatic Repeat-reQuest (ARQ) mechanism imple-
mented on the Radio Link Control (RLC) [25], our exper-
iments reported in Section VI-A will show that the trans-
mission over EDGE-GPRS or even GPRS is very robust
since the rate of lost datagrams is extremely low and none
is received out of order. For this reason, and for the fact that
MOoSES aims to deliver only video streams with no addi-
tional audio or text to be synchronized with, we decided to
use raw UDP instead of RTP/UDP.

As shown in Fig. 2, the development was partly based on
C#/.NET Framework and partly on native C/C++ modules. In
particular, the use of the. NET Framework is devoted only to
non-intensive tasks (GUI and controlling layer).

B. PC Video Decoder

In case of PC-based client, the decoder layer has the func-
tional scheme reported in Fig. 3. The computational demand
of H.264 for decoding is definitely lower than encoding, there-
fore the most critical issue for this PC-based layer is not re-
ally the computation optimization rather the efficient network
buffering and the data flow management; in fact, even if video
grabbing frame rate (encoder side) and playback frame rate (de-
coder side) are set to the same values, the datagram genera-
tion rate (encoder side) and the datagram extraction rate (de-
coder side) might differ from time to time for several reasons,
such as wireless network instability, varying CPU load (either
on encoder or decoder side) due to operating system tasks, video
coding (changing video scene complexity), and so on. Specif-
ically the following procedures were adopted to minimize la-
tency and preserve the best of the video quality obtained from
the network down-streaming:

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 10, NO. 6, OCTOBER 2008

- display parameters

User inputs (frame size, orientation)
UDP - playback control (T, Ty, p)
raw H.264 | Oberatin
—> Syetem_ | GetBufter.
ystem
UDP buffer | Occupancy
1 v
* . 2
Playback Frame
Decoder &
Network Module Rate Control
FFMPEG | H
FFVPES) — Rraw | v Video
RGB playback
H264 | > Display Control >
decoder e

\ (GDI+)

| GUl/controlling layer (C# .NET)
Operating System (Windows XP)

Fig. 3. Functional scheme of the PC video decoder layer.

— dynamic buffer sizing: if the datagram generation rate re-
mains higher than the datagram extraction rate for a suffi-
ciently long time, the buffer might fill up and every data-
gram received afterward would be lost (buffer overflow).
‘We propose a simple algorithm that dynamically adapts the
buffer size: it either doubles the buffer size when this gets
filled up beyond a value x %, or halves it when its level de-
creases below (100 — x)%. x is computed empirically and
depends on the network’s conditions, buffer initial size and

video bitrate;

— adaptive playback frame rate: even if the latency time is,
for obvious reasons, directly related to the occupancy of
the network buffer, tuning the system to keep it as empty
as possible would result in uneven trend of the playback
frame rate, due to buffer underflow. Therefore, to achieve
the best tradeoff between low latency and good fluidity, the
playback frame rate control (see Fig. 3) implements a set of
rules to keep the buffer occupancy between two values T,
and T’y (typical values are 17, = 5% and Ty = 15% of the

buffer size). In general, the playback frame rate FR

playback

at tlme t is function of two values: the buffer occupancy

OCC

(that needs to be kept between 77, and Tp) and the

discrete derivative of the buffer occupancy AB! .. The
adaptive control can be summarized as follows:

FR!

where W defines a window of AB?

playback —

(FRplayback (+ p)’
if ABt,. > W
1
FR;layback (1 - /)),
lf ABECC < W (1)
1
FR;layback
if (occ7 ABécc) Optimal
FRplavha(‘k (I;’ AB(t)cc) ’
\ otherwise

¢ cc (typical value is a

few thousandths), which represents the limits for a sus-

tainable variation of the buffer occupancys; if the |[AB

OCC|

consistently exceeds W, the system will end up in buffer
overflow or underflow in a short time. p is the reactivity
of the adaptive control (0 < p < 1 but typical value is
approximately a few hundredths). The closer p gets to O,
the weaker the adaptive control is; eventually the control
would be disabled with p = 0. The reactivity increases to-
gether with p, eventually ending up in an unstable system.

Authorized licensed use limited to: UNIVERSITA MODENA. Downloaded on November 4, 2008 at 05:05 from IEEE Xplore. Restrictions apply.

GUALDI et al.: VIDEO STREAMING FOR MOBILE VIDEO SURVEILLANCE

- display parameters

User inputs (frame size, orientation)
- playback control (&)
ubpP Y
raw H.264 | | gperatin, i
g;stemg L Application | » Playback Frame
g8 UDP buffer Bty Get Buffer | | Rate Control
‘G | Occupancy
g Decoder &
Network Module
(FFMPEG) v Video

RAW Dis layback
play Control | playbacl o,
H264 RGB o (GAPI & O
decoder Memory Direct Draw) @ (

Mapped
File (IPC) | GUI/controlling layer

Operating System (Windows CE) (C# .NET)

Fig. 4. Functional scheme of the PDA video decoder layer.

The pair of values (B.., AB!

occ? occ

the following cases:

) is considered optimal in

(AB!.., B!..) optimal if :
TL<Bct)cc<TH A ABE)CC%O
B(t)cc > Ty A _WSABECCSO . @
Bécc<TL A OSABECCSW

In other words, the control reacts increasing (decreasing)
the playback frame rate when the buffer occupancy in-
creases (decreases) too rapidly (JABL..| > W). When
the conditions are optimal the playback frame rate is kept
constant. In all the other cases, the frame rate is slightly ad-
justed with a factor proportional to the slope of variation
of the buffer occupancy;

— decoder-display coupling: In the absence of synchro-
nization between the decoder and display threads, it may
happen that a frame is correctly decompressed but not
displayed, therefore lost, because it is overtaken by a
decoded frame which follows (frame overwriting effect).
Buffering the frames flow would solve the problem but it
would also introduce some latency. A different approach,
that completely avoids buffering, is to introduce a simple
synchronization decoder-display that, just before a frame
gets overwritten, delays the decoder (up to a maximum of
1/2FR}}, bac) until the frame is effectively displayed.
As shown in Section VI-C, this solution massively reduces
frame losses and, even better, has a positive effect on the
latency.

C. PDA Video Decoder

Fig. 4 shows the scheme of the PDA decoder. Differently
from the PC version, the successful implementation of the PDA-
based decoder requires peculiar optimizations, given the limited
computational power of these devices. Specifically, the most
critical issues are, together with video decoding and network
buffering, video data exchange between processes and video
display. The most suitable operating system to rely on in such
tight conditions would be Linux for embedded systems, given
the important advantage of being open source, thus enabling
low-level control on memory, network and management of pro-
cesses and services. Unfortunately, the limited support for most
of the devices and peripherals (such as GSM/GPRS modems)
prevented us from adopting this solution, opening the way to
Windows CE. Each module and the most important functional-
ities designed for a successful PDA-based decoder follow:

1147

— optimized display control: in the case of PDA-based
solution, writing video data directly on the graphic card
memory is computationally very convenient rather than
relying on the standard functions of the operating system.
For this reason the display control is based on GAPI
(Game API)! and Direct Draw? instead of GDI+ func-
tions. For a further speed up of this control, we made use
of pre-calculated look-up tables for image rescaling and
90-degrees flipping, used to fit the desired playback frame
size and orientation;

— inter-process communication: the decoding and the GUI
modules are kept completely detached in their scheduling
(i.e., they run on two separated processes), so that each pro-
cessing flow will not interfere with the other (for example,
when the GUI module calls the garbage collector). Since a
QQVGA (160 x 120) video, 24 bits RGB colors at 10 fps,
would generate a 4.6 Mbps bandwidth communication, it is
evident that the Inter-Process Communication (IPC) must
be extremely efficient to avoid frame skipping and pre-
serve video fluidity. Data exchange through either a UDP
local loop-back or file system is not feasible since both
these methods could not sustain such a high data transfer
rate without compromising the overall performance of the
system. Moreover, since file systems are actually based on
flash memories which have a finite number of erase-write
cycles, IPC based on file system would deteriorate the sup-
port in a short time. The most efficient IPC method to be
used is then memory-mapped files (MMFs), i.e., a virtual
file on RAM memory. This approach allows the achieve-
ment of performance comparable to shared memory be-
tween threads;

— adaptive playback frame rate: the implementation of the
adaptive control described in the PC-based decoder needs
to be revisited to be successful on a PDA. Since Win-
dows CE does not allow querying of the occupancy of the
UDP buffer, an application buffer on top of the UDP op-
erating system buffer must be added (see Fig. 4). In ad-
dition, the algorithm presented in Section IV-B can not
be successfully implemented on a PDA, because the com-
putational resources can not sustain the required frame
rate in case it needs to be firmly increased (usually when

AB!_. > W). For this reason the PDA decoder layer em-

ploys a light-weighted control based on the key task of

keeping the UDP buffer occupancy as low as possible (but
greater than zero) in order to minimize the playback inter-

ruptions due to buffer underflows. Given a value € that is a

few thousandths above 1, the control acts as follows:

FRUL, /6, i ABL =0
FR! — playback/ o 3
playback { FR;Talyback . 527 if AB:)CC > 0. ()

Being e slightly above one, the reaction in the case of buffer
occupancy greater than 0 is stronger than in the other case. An-
alytical results will be given in Section VI-C, where ¢ = 1.002
was used. This control does not claim to be an optimal algorithm
for playback frame rate adaptation (for a deep analysis of adap-
tive playout, refer to [18]) but our goal is to verify that even on

thitp://msdn2.microsoft.com/en-us/library/ms879884.aspx
Zhttp://msdn2.microsoft.com/en-us/library/ms879875.aspx

Authorized licensed use limited to: UNIVERSITA MODENA. Downloaded on November 4, 2008 at 05:05 from IEEE Xplore. Restrictions apply.

1148

reduced-power processors a simple adaptive control can signif-
icantly increase the fluidity of the video playback without the
need of further buffering.

Regarding the dynamic buffer sizing and decoder-display
coupling, the PDA decoder implements the same procedures
described for the PC decoder.

V. METHODOLOGY OF PERFORMANCE EVALUATION

Evaluating the performance of a live video streaming system
is not an easy task, since it is mostly based on the perceived
quality of live (not stored) videos by means of the human
receiver. We propose a methodology to extract quantitative
measures on four aspects in accordance with our requirements:
image quality, video latency, frame loss and video fluidity. In
addition, measures for assessing the performance of the mobile
video surveillance system are proposed, as follows.

1) Image Quality: It can be easily measured with PSNR
(Peak Signal-to-Noise Ratio) that gives an idea of the distortion
introduced by the coding and transmission process. Even though
this is not completely corresponding to the way our human vi-
sual system evaluates the quality, it is an easy and well-known
method to measure image quality.

2) Video Latency: There are not commonly accepted
methods for measuring the latency in an analytical way. An
approximate measurement could be obtained by synchronizing
the encoding and the decoding unit on the same time server,
and modifying the encoder so that it dispatches, together with
the encoded frames, also the timestamp of their grabbing. Then,
the decoding unit detects the time of display of a decompressed
frame and deducts the latency by time differencing [26]. This
procedure has several drawbacks: on one side the synchroniza-
tion with the time server should be frequent, in order to have
precise time gap measurements; this would be a waste of both
CPU cycles and bandwidth; moreover embedding a timestamp
for each frame would result in further bandwidth waste. In ad-
dition this kind of measurement requires modifications to core
functions of the video grabbing, networking and displaying,
therefore it is only feasible on open source code and cannot be
employed on closed systems such as Windows Media and Real
Networks, that we want to compare with.

Consequently, an alternative way to measure the latency
must be used. Schmidt in [27] presents an interesting approach
to measure the synchronization of synthetic multimedia data
(video, audio and text) through external observation of media
players using several sensors: we modified and extended the
approach for real video data. The frame number is superim-
posed on each frame of a recorded video. We then play the
video both on the encoding unit, and, after having it passed
through compression and streaming, also on the decoding unit.

Let us call £ a given time instant, FN¢,.(#) and FNge.(f) the
frame number shown on the encoder and decoder respectively.
Let us define £* as the time such that FN,,,.(t*) = FNge.(%).,
i.e., the time such that the same frame number is visible on both
sides. It holds that * < £. Let us then call Aty the time gap
between two grabbed frames on the encoder, which is constant
since the grabbing frame rate is constant; in such conditions a
generic time ¢ can be approximated with t = Atepe - FNenc(t)

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 10, NO. 6, OCTOBER 2008

(b)

Fig. 5. Experimental methodology used to measure latency. (a) and (b) are two
frames of the same video, respectively frame number 1702 and 1718. During a
streaming session (see figure (c)) it happens that, due to latency, the encoder
side is showing frame (b) while the decoder the frame (a).

and exploiting the definition of latency as L(¥) = { — ¢*, we can
write it as:

L) =7 —1* = Atene - (FNune(F) = FNene(7))
= Atcnc . (FNonc(i) - FNdoc(i)) @

This procedure needs to embed frame numbers directly on
video frames and it could be made automatic with a tool for rec-
ognizing the numbers on the images: using plain numbers can
be problematic due to the distortion introduced by strong image
compression, which could make OCR task unreliable. For this
reason, we prefer to adopt a code-based number representation.
The binary coded frame number is superimposed on a small por-
tion of each image. More specifically, blocks of white and black
color were used to code 1s and Os, respectively. Fig. 5 shows
some snapshots of the methodology. The leftmost-upper two
blocks are static and are used for calibration purposes. A video
streaming session gets started and the video is played on the
screens of both sides (encoder and decoder), which are physi-
cally placed one close by the other. At the same time, an ex-
ternal high-frame-rate camera acquires and stores a video of the
evolution of the streaming process on both screen (Fig. 5(c)).
The resulting video is processed with simple image processing
algorithms to automatically compute FN,,,. and FN 4. by rec-
ognizing black and white blocks and deduct latency using (4).
The tool is very flexible as it can measure the latency also on
non open-source systems, e.g., Windows Media and Real Net-
works.

3) Frame Loss: The following equation quantifies the
lost frames LF(t) exploiting the same frame number coding
methodology: given AFNgec(j) = FNgec(§) — FNaec (7 —
Atyeq), Where Atae, is the discrete sampling period of the
external camera and j is a generic frame of its recorded video:

t
LF(¢) = Z ©(7) where
7=0
if AFNgec(j) <1
otherwise.

) 0,

e(j) = {AFNdec(j) —1, Q)
In other words, given that the encoding frame rate is constant
and that the frame rate of the external camera is much higher
than the encoding and decoding frame rates, if two successive
frames grabbed with the acquisition camera contain the same
number or successive numbers, no frames were lost.

Frame losses can be due to either network datagram losses
(this event would most likely produce a loss of several con-
secutive frames, since with high compression rates and lim-
ited frame size, a datagram usually contains several frames)

Authorized licensed use limited to: UNIVERSITA MODENA. Downloaded on November 4, 2008 at 05:05 from IEEE Xplore. Restrictions apply.

GUALDI et al.: VIDEO STREAMING FOR MOBILE VIDEO SURVEILLANCE

or due to compression skipping or decoder frame overwriting.
Given the aforementioned high degree of reliability of GPRS
and EDGE-GPRS, in the next section we will give evidence of
frame losses due to compression skipping and to decoder frame
overwriting only, which are definitely predominant on the ef-
fects due to network failures.

4) Video Fluidity: Tt can be measured as the trend of the
Atqgec, the time gap between two frames played by the decoder.
This information can be computed again exploiting the frame
number coding. In the best case, At is constant and equal to
Atenc; conversely the more the Atqe. is scattered, the more the
video playback looses in fluidity.

5) Object Detection and Tracking: The performance of the
computer-based video surveillance system will be evaluated in
terms of both pixel-level segmentation and object-level tracking
performance. Pixel-level segmentation can be evaluated consid-
ering the possible loss in segmentation accuracy due to video
compression and streaming. As ground truth we used the seg-
mentation generated on the original uncompressed video. In
fact, our scope is to evaluate the loss in performance only due to
the video compression and streaming and not the generic per-
formance of the segmentation algorithm. By comparison with
the ground truth, recall and precision are computed for each
frame. Similarly, the object-level tracking evaluation is provided
by comparing the tracking results on original and compressed
videos. Specifically, the evaluation of the loss in tracking ac-
curacy due only to video compression and streaming is per-
formed as follows: let us call TR a generic track of an object
and Length(TR) its length in time. In compressed videos, a
track can be often split in more sub-tracks with different iden-
tifiers. Defining TRy, as the ith track on the original video,
and TRi’,{lpr (with 5 = 1,...N) the N distinct tracks on the
compressed video in which the TRi’)rig was (mistakenly) split;
defining aj' for each TR! . as:

orig .

j= arg max Length (TRi’j) 6)
J

cmpr
then the accuracy ACC can be measured as follows:

ij
ZVZ’ TRcmpr

ACC = mpr
ZVi TRorig

N

VI. EXPERIMENTAL RESULTS

A. Test Bed and Operational Conditions

The architecture of Fig. 1 can be divided in two distinctive
blocks that can be evaluated in a separate manner: the video
streaming block (first and second layer), and the video surveil-
lance block (third layer), specifically dealing with the computer-
based part.

The tests on the video streaming block are designed to verify
the degree of fulfillment for the requirements listed in Table I.
The results are discussed on the basis of two different platforms:
the former is PC-to-PC, the latter is PC-to-PDA.

For the PC-to-PC platform, we prepared a mobile-to-fixed
system: the mobile site was mounted on a car (camera-car
setup) and equipped with a standard x86 laptop (Intel Pentium
Centrino 1.7 GHz), connected to either a USB Camera (Log-
itech Quickcam Pro 4000) or an IP camera (Axis 2420 plus

1149

TABLE II
STORED VIDEOS USED FOR EVALUATION OF VIDEO STREAMING
AND COMPUTER-BASED VIDEO SURVEILLANCE BLOCKS

VCAR

Evaluation of video streaming video streaming

Scenario Indoor (webcam Outdoor (camera-car
inside laboratory) in urban traffic)
Frame Rate 10 fps 10 fps
Resolution QVGA (PC-to-PC) QVGA (PC-to-PC)
QQVGA (PC-to-PDA) | QQVGA (PC-to-PDA)
Length ~ 120 s ~ 600 s

VHALL

£

video surveillance

video surveillance

Evaluation of

Scenario Indoor (static camera Outdoor (static camera
at building hall) at public park)
Frame Rate 10 fps 10 fps
Resolution QVGA QVGA
Length ~ 420 s ~ 420 s

infra-red illuminator for night vision), and an EDGE-GPRS
modem used for uplink video transmission. For the PC-to-PDA
platform, we tested a fixed-to-mobile scenario; some tests have
been performed also in a mobile-to-mobile scenario (from our
camera-car setup to the PDA). Two different PDAs have been
used for the tests (i-Mate JasJar, WM 5.0, CPU: Intel Bulverde,
520 MHz; i-Mate PDA2k, WM 2003, CPU: Intel PXA263,
400 MHz); the results did not show relevant differences by
using different PDAs. The radio mobile connectivity was
always GPRS-based.

In both hardware configurations, the following operational

conditions are used:

— video encoding: the H.264 codec has been tested in two dif-
ferent profiles: a baseline (to achieve low latency at the cost
of low quality) and a high profile (for best video quality at
the cost of higher latency). The high profile contains sev-
eral enhancements including the use of CABAC [3] en-
coding, wider reference window for B frames, deeper anal-
ysis for macroblock motion estimation, finer sub-pixel mo-
tion estimation and better rate distortion algorithms;

— video sources: the design and development of the system
was always tailored for live video sources, but the per-
formance measurements were gathered using two stored
videos (VLAB, VCAR) in order to replicate the experi-
ments on the same data. Table II shows the main proper-
ties of the test videos. Specifically, the video VLAB con-
tains scenes with three different types of motion: reduced
(moving people but static camera), medium (freely moving
camera) and extreme (shaking camera); the video VCAR
is taken from the camera-car setup while driving in a busy
urban area.

— network and bitrates: when relying on EDGE-GPRS,
video bitrate was set to 80 and 20 kbps. A few tests

Authorized licensed use limited to: UNIVERSITA MODENA. Downloaded on November 4, 2008 at 05:05 from IEEE Xplore. Restrictions apply.

1150

TABLE III
LATENCY OF WINDOWS MEDIA, REAL MEDIA, VLC, MOSES. PC-10-PC
SCENARIO, VLAB AT QVGA. * DECODER-DISPLAY COUPLING

Tool Profile Bit D-D Playb. Avg | Std
rate Cpl* frame lat. dev
(kbps) rate (sec)

1 | MOSES | baseline 80 no fastest 1.26 | 0.28
2 | MOSES | baseline 80 yes fastest 1.21 | 0.28
3 | MOSES | baseline 80 yes adaptive | 1.55 | 0.27
4 | MOSES | high pr. 80 yes fastest 1.65 | 0.38
5 | MOSES | baseline 20 yes fastest 141 | 0.33
6 | Win. M. 80 4.76 | 0.36
7 | Real M. 80 3.15 | 0.07
8 | VLC baseline 80 221 | 0.27

were made saturating the effective EDGE-GPRS band-
width, at 120 kbps. When using GPRS, video bitrate was
set to 20 and 5 kbps, and a few tests were made with
10 kbps. As mentioned in the introduction, 20 kbps on
EDGE-GPRS and 5 kbps on GPRS are meant to gen-
erate four simultaneous and independent (not spatially
multiplexed) video streams. We have experimented the
wireless network transmission in several conditions: half
tests were performed with the encoder as mobile site, the
other half being the decoder side. Half the cases inside a
building and in the other half on our camera-car setup (we
drove for more than 80 km, at urban and freeway speeds
—50/110 km/h). We measured the network transmission
on 20000 UDP datagrams, for more than 140 minutes of
video streaming over GPRS at 5 and 20 kbps and over
EDGE-GPRS at 80 kbps. In these conditions, thanks to the
ARQ implemented in the RLC, a very reduced percentage
of datagrams was lost (0.54%) and none was received out
of order.

The tests on the computer-based video surveillance block
are designed to evaluate its effectiveness within the context
of mobile video surveillance; the analysis is performed using
a static camera in order to segment the moving object with
the background suppression technique of SAKBOT [24]. Two
different surveillance scenarios are considered: an indoor one,
taken at the hall of the building of our Department and an
outdoor one, taken from a camera mounted in a public park.
The first scenario is characterized by few moving people and no
illumination changes, while the second is a less-controlled sce-
nario, where several people move in the scene and illumination
changes. The second scenario is obviously more challenging
for both the video encoder and the computer-based video
surveillance system. For performance analysis we recorded two
videos, called VHALL and VPARK (Table II).

B. Experimental Results of PC-to-PC Scenario

Latency measures in PC-to-PC scenario are summarized in
Table III. MoSES is configured in five different ways and com-
pared against Windows Media, Real Media and VLC. The la-
tency introduced by MoSES is the lowest, whatever configu-
ration is used. With respect to the base configuration (row #1
of Table III), the introduction of the decoder-display coupling,
for frame-overwriting reduction, decreases the average latency
from 1.26 s to 1.21 s (row #2). Instead the use of the adaptive
frame rate control with 11, = 5%,Ty = 15%,W = 0.005

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 10, NO. 6, OCTOBER 2008

() (b)

() (d

Fig. 6. Buffer occupancy and Atq.., with MoSES’ adaptive control disabled
(a), (b) and enabled (c), (d), configured with T, = 5%, Ty = 15%, W =
0.005 and p = 0.04. (a) Buffer occupancy (%), (b) Atqec, (c) Buffer occupancy
(%) and playback frame rate, (d) étgec.

and p = 0.04 (row #3) has the cost of a slight increase in la-
tency (1.55 s) but greatly improves the video fluidity (see fur-
ther). The introduction of a high complexity encoding profile
(row #4) adds about 0.45 s of latency, that is tolerable consid-
ering the gain obtained in image quality. Finally, the reduction
of the bitrate (from 80 to 20 kbps) increases the latency (row #5)
because the time to fill the UDP datagrams (whose size is kept
unchanged for the sake of the test) is longer.

In order to produce a fair comparison, the other three systems
have been configured to minimize latency—smallest buffer size
and fastest video codec and profiling. In Windows Media, the
streaming server layer was removed and the video was streamed
directly from the encoder to the player. VLC H.264 was config-
ured with the same baseline profile used in MoSES; since raw
UDP streaming is not supported, MPEG-TS/UDP/IP (the only
one available on UDP) was used: under these conditions the la-
tency is fairly low (row #8), but this is obtained at the cost of a
fully compromised video quality, since about 48% of the video
frames were corrupted or lost.

A possible side effect of reducing the latency is to lose
video fluidity, having an irregular trend of Atqe.. The graphs
in Figs. 6(a) and (b) show the buffer occupancy and the Atge.
respectively, with MoSES configured as in row #2 of Table III:
the buffer occupancy is always close to zero, resulting in an
almost-ideal latency. However, this set-up generates a frequent
increase of the frame decoding time, from the expected 100 ms
(due to a FRpjayback Of 10 fps) up to 1.4 s. These continuous
changes in the Atq.. bring to poor video fluidity, affecting both
the overall user satisfaction and the understanding of the scene
for the human-based video surveillance.

Figs. 6(c) and (d) show the improvements achieved by en-
abling MoSES’ adaptive control in the condition of row #3 of
Table III. The trend of the At 4. demonstrates that the playback
is made fluid. As described in Section IV-B, when the buffer oc-
cupancy is lower than 77, (5% in this experiment), the control
starts decreasing the decoding frame rate until the buffer occu-
pancy is stable between 17, and 1. Conversely, when the buffer
occupancy is higher than Ty, the control increases the playback
frame rate to empty the buffer.

Authorized licensed use limited to: UNIVERSITA MODENA. Downloaded on November 4, 2008 at 05:05 from IEEE Xplore. Restrictions apply.

GUALDI et al.: VIDEO STREAMING FOR MOBILE VIDEO SURVEILLANCE

Fig. 7. Comparison of image quality (PSNR) measured on the VLAB video.
The video contains scene with static camera (approximately frames 210—-450
and 1030-end), moving camera (approx. frames 450-640), shaking camera (the
rest). The symbols in the bottom part of the graph represent lost frames.

#w i,

120 kbps

PSNR (dB)
8

° k23885888 LB 8 LEE LB LB BB EBRER 88
FARSISSSRPEBIEEIITRERELEEEERSFANRR

Fig. 8. PSNR measured on the VCAR video using MoSES at 20 kbps
(QQVGA), 80 kbps (QVGA), and 120 kbps (QVGA).

Fig. 7 shows image quality and frame losses measurements
over the VLAB at 80 kbps. Image quality is evaluated in terms
of PSNR and the lost frames are represented with superim-
posed symbols at the bottom of the same graph. MoSES was
configured with high encoding profile (row #4 of Table III).
VLC could not work properly with the same high profile due to
a massive video frame corruption, therefore it was configured
with a slightly lighter profile. Windows Media and Real Media
were configured with WMV9 and RMV 10 codecs respectively.
Table IV summarizes the achieved results: the statistics over
the PSNR are computed on the correctly received frames only.
MoSES outperforms the others, showing also very few (and
fairly distributed) lost frames.

Eventually image quality on MoSES is measured at different
bitrates. We used the VCAR video, encoded with baseline pro-
file (results in Fig. 8). The difference in the PSNR along the
time is mainly due to the different scenes in the video (moving
or stationary car) which change the global image motion there-
fore varying the compression quality.

It is interesting to notice how the image quality increases sig-
nificantly (becoming higher than 35 dB even in the 20 kbps
video stream) when the camera is not moving, being when the
car has stopped at traffic light (between frame 1700 and 2000).

C. Experimental Results of PC-to-PDA Scenario

Table V and Fig. 9 show the latency measurements in the
PC-to-PDA scenario on the VLAB video; VLC is excluded be-
cause its PDA player is not actually available. Fig. 9(a) shows
the comparison between Windows Media PDA player and Real
Media PDA player according to row #7/8 of Table V. Both these
systems show an almost-constant, rather-high latency. More-
over, Windows Media shows latency scattering from second 60
to second 90, corresponding to the part of the video sequence
when the camera is shaking; also the lost frames are concen-
trated in this part of the video.

Fig. 9(b) plots the latency of MoSES, encoding video in the
three conditions of row #1/2/3 of Table V. The orange plot

1151

(a) (b)

‘H;.
LT
“‘ | u',

LI ”"‘""
W MWWW\“ WWM

“‘IW
MY

Fig. 9. Comparison in terms of latency over VLAB at QQVGA. The scale of
the latency is different on graphs (a), (b), and (d).

(Table V, row #1) shows the latency when the decoder and dis-
play threads are running decoupled. This generates a massive
presence (79%) of frame losses, due to overwriting. The plot
shows sharp and regular peaks due to a twofold reason: buffer
underflows (sharp latency raises) and very fast playback (sharp
latency falls). Avoiding frame overwriting the frame losses are
reduced to 2%: this is the blue plot (Table V, row #2), that shows
smaller peaks as expected. The introduction of the decoder-dis-
play coupling increases the dependency of the latency on video
sequence complexity: for example, the latency suddenly drops
around second 28, when the camera starts to move. This is due to
the tolerance of the bitrate control: the more complex the scene
is, the higher the encoding bitrate and the lower the time to fill
up and deliver a datagram. The opposite effect is visible around
second 96, when the camera stops moving. In addition, row #2
shows again the positive effect on the average latency because
of the introduction of the decoder-display coupling. The green
plot (Table V, row #3) of Fig. 9(b) shows the latency when the
adaptive control is turned on: since the buffer is initially empty,
it reduces FRplayback Of a factor € = 1.002 each frame; after a
few seconds (approximately 15), FRjayback has reached a crit-
ical value and the latency starts to increase until the buffer oc-
cupancy becomes definitely greater than zero: at this point, the
reaction of the adaptive control becomes effective and reduces
the latency through the increase of FR piayback Of €2 each frame.
The adaptive control drastically reduces the presence of peaks
in the latency. Fig. 9(c) shows the frame number trend of the
streams of Fig. 9(b) in a short time interval. The plot clearly
shows the smoothness in the playback introduced by the adap-
tive control.

Eventually, Fig. 9(d) shows the latency measured for MoSES
in the three conditions of row #2/4/5 of Table V. As expected,
the high profile increases the latency. Also the 10 kbps stream
latency is higher: as aforementioned, the reduction of encoding
bitrate increases the time to fill the UDP datagram.

We also measured latency in a mobile-to-mobile (specifically
laptop to PDA) setup (row #6): the plot of the latency is similar
to the other cases, but the average and the standard deviation
tend to increase. In fact this configuration introduces a further

Authorized licensed use limited to: UNIVERSITA MODENA. Downloaded on November 4, 2008 at 05:05 from IEEE Xplore. Restrictions apply.

1152

40 * Windows Media
1 + Real Media
F Moses

f 2
\n“* Y

"gg % x"*"k‘g??"

PSNR (dB) @ 20 kbps

i * Windows Media
+ Real Media

PSNR (dB) @ 10 kbps

* Windows Media
+ Real Media
MosEs
© MoSES, forced @3.3 fps

PSNR (dB) @ Skbps.
8

TRSRRZAZABRANENSIINLISTIRRARE

Frame number

Fig. 10. Comparison of video quality (PSNR and frame losses) over VLAB
at QQVGA and 20, 10, 5 kbps. The symbols in the lower part of each graph
indicate frame losses.

Recall

Recall

on o | o]
*MoSES * Real Media

b

MoSES + Real Media |
: 4 el

Pracision Procision

(a) (b)

Recall

Recall

T Fonseoesh wom s : ‘
— — — T £ L 5

Procision Procision

(© (d

Fig. 11. Recall versus Precision for pixel-level segmentation over VHALL and
VPARK at QVGA resolution.

degree of instability in the network communication, due to the
additional step of the video data flow on radio mobile channels.

Eventually we calculated the PSNR of the compressed frames
and the frame losses of the VLAB on the three systems. MoSES
was configured in high profile (row #4 in Table V). Fig. 10 shows

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 10, NO. 6, OCTOBER 2008

Fig. 12. Snapshots showing the video tracking obtained with Sakbot on the
Park sequence: (a) original, (b) MoSES at 5 kbps, (c) Real Media at 5 kbps. The
tracking numbers on the objects are just sequential IDs and do not need to be
consistent between one video and the others.

TABLE IV
PSNR AND PERCENTAGE OF LOST FRAMES IN THE PC-TO-PC
SCENARIO OVER VLAB AT QVGA AND 80 KBPS

PSNR in dB % of
avg. (std. dev.) lost frames
Windows Media 34.79 (2.61) 2.09%
Real Media 35.32 (2.66) 9.38%
VLC 32.76 (3.04) 73.96%
MOSES 38.23 (2.16) 4.00%
TABLE V

LATENCY OF WINDOWS MEDIA, REAL MEDIA, MOSES. PC-TO-PDA
SCENARIO, VLAB AT QQVGA. *DECODER-DISPLAY COUPLING

Tool Profile Bit D-D Playb. Avg Std
rate Cpl* frame lat. dev
(kbps) rate (sec)

1 | MOSES baseline 20 no fastest 1.25 | 0.28

2 | MOSES baseline 20 yes fastest 1.16 | 0.30

3 | MOSES baseline 20 yes adaptive | 1.76 | 0.39

4 | MOSES high pr. 20 yes fastest 1.68 | 0.58

5 | MOSES baseline 10 yes fastest 229 | 047
6 | MOSES

mob-mob | baseline 20 yes fastest 296 | 049

7 | Win. M. 20 642 | 0.14

8 | Real M. 20 3.87 | 0.10

the results at 20 kbps, 10 kbps and 5 kbps. The stronger the com-
pression becomes, the higher the frame loss rate is. It is evident
that MoSES outperforms, on average, the other two, especially
in terms of lost frames. Table VI reports a summary of the per-
centage of lost frames and the average PSNR. MoSES could
sustain 10 fps even at 5 kbps, but, as expectable, the frame rate
is maintained only at the cost of PSNR. Forcing our encoder to
skip 2 frames on 3, PSNR increases significantly (Fig. 10): the
percentage of lost frames is 67.48% (consider that 66.6% was
due to the forced frame skipping at the encoder side), but the av-
erage PSNR is 29.76 dB. However, as stated above, this is not a
suitable solution for the computer-based video surveillance due
to an excessive frame skipping that prevents correct tracking.

D. Experimental Results of Computer-Based Surveillance

The accuracy of the overall system has been measured in
terms of both pixel-level segmentation and object-level tracking,
by comparing the results achieved by SAKBOT on the original,
non-compressed video with those obtained on the compressed,
streamed video. Since frames are lost during the transmission,
we need a way to align the two videos (original and compressed)
for having a correct comparison. The embedding of the frame
number used to measure the latency (Section V) is exploited also
for video alignment.

Authorized licensed use limited to: UNIVERSITA MODENA. Downloaded on November 4, 2008 at 05:05 from IEEE Xplore. Restrictions apply.

GUALDI et al.: VIDEO STREAMING FOR MOBILE VIDEO SURVEILLANCE

1153

TABLE VI
PSNR AND PERCENTAGE OF LOST FRAMES IN THE PC-TO-PDA SCENARIO OVER VLAB AT QQVGA RESOLUTION

PSNR in dB. Avg. (std. dev.) % of lost frames
20 kbps 10 kbps 5 kbps 20 kbps | 10 kbps | 5 kbps
Windows Media 28.52 (2.14) | 27.02 (0.97) | 27.81 (1.01) 17.27% | 56.73% | 96.11%
Real Media 30.39 (2.80) | 28.59 (2.24) | 27.36 (1.78) 8.93% 30.04% | 60.01%
MOSES 32.80 (2.77) | 28.93 (3.28) | 24.47 (3.01) 0.32% 0.64% 15.86%
MOSES, forced @3.3 fps n/a n/a 29.76 (3.28) n/a n/a 67.48%
TABLE VII
SEGMENTATION AND TRACKING ACCURACY OVER VHALL AND VPARK AT QVGA RESOLUTION
% of Segmentation Tracking
Video lost Recall Precision Number of | Tracking
frames avg. | std. dev. avg. [std. dev. Objects Accuracy
MOSES VHALL - 5 kbps 041% | 82.95% 1.99% 87.31% 1.40% 29 96.51%
Real Media VHALL - 5 kbps 887% | 77.90% 1.63% 72.0% 2.54% 29 81.32%
MOSES VPARK - 5 kbps 0.11% | 68.15% 1.46% 74.8% 1.68% 49 89.11%
Real Media VPARK - 5 kbps 14.60% | 68.67% 1.35% 66.8% 1.91% 49 67.95%
MOSES VPARK - 20 kbps | 0.34% | 81.00% 0.98% 83.9% 1.40% 49 91.91%
Real Media VPARK - 20 kbps | 0.02% | 80.53% 0.93% 80.2% 1.08% 49 91.83%
Windows Media | VPARK - 20 kbps 1.81% | 72.42% 1.32% 80.9% 1.18% 49 89.87%

Fig. 11 shows segmentation recall and precision in different
conditions. Each dot represents the recall-precision of a video
frame. Obviously, the closer the points are to the upper-right
corner (corresponding to R = 1 and P = 1) the higher the
accuracy is. The graphs also report the average recall and preci-
sion, represented by a green circle (MoSES) and brown square
(Real Media and Windows Media) circles. The average and vari-
ance of recall and precision, computed on the correctly received
frames only, are summarized in Table VII. This table also shows
the percentage of frame losses due to the strong compression
rates.

We initially considered the hardest case in terms of band-
width, by supposing to send four video streams over GPRS,
coding each video at 5 kbps. As a comparison, we tested both
MoSES and Real Media. Windows Media and VLC were un-
able to encode QVGA video at such a low bandwidth.

The graph in Fig. 11(a) shows precision and recall for the
VHALL: even with such a limited bandwidth, the segmentation
based on MoSES streaming is very close to the one obtained
on the original video. This result does not hold in the case of
the outdoor sequence of the VPARK [Fig. 11(b)]: in fact, the
extensive presence of moving objects and the frequent illumi-
nation changes make the compression less effective; in this case
the average recall of MoSES is less than 70% and the precision
only about 75% (see Table VII). Thus, we also performed a test
over EDGE-GPRS using 20 kbps for each video stream. Win-
dows Media supports this bitrate (VLC still does not), and it is
then added to the comparative tests [Fig. 11(c) and (d)]. Real
Media shows a better recall on Windows Media, but has sim-
ilar precision. However, MoSES performs better than both the
compared systems in almost all working conditions, on recall,
precision and frame losses.

Table VII summarizes also the results for object-level
tracking. It is evident that with 20 kbps the performance of
the tracking (whatever system is used) is not strongly af-
fected, having approximately 90% of accuracy compared to
the tracking on the original video. Instead, when the bitrate
falls to 5 kbps, only MoSES is able to maintain reasonable

performances. The tracking accuracy on the compressed video
depends not only on segmentation accuracy but also on the
frame loss rate. The tracking of Real Media on the VPARK at
5 kpbs strongly suffers from the high frame loss rate (14.60%),
that is concentrated in the portion of the video with higher
motion. A sample of the tracking in the park video sequence at
5 kbps is shown in Fig. 12: the tracking consistency is visually
represented by the superimposed trajectory of the objects.

VII. CONCLUSION

This paper reports the efforts for building a complete
streaming system for mobile video surveillance. The three
basic layers of such systems, specifically encoder, decoder and
video surveillance, were implemented with suitable optimiza-
tion of open source modules to obtain efficient video streaming
over GPRS/EDGE-GPRS networks. Measures over image
quality, video latency, frame loss and video fluidity were gath-
ered for MoSES and compared with other systems with stored
videos even if the system was thoroughly tested in real-time
live-video scenario. Then, the performance degradation of the
computer-based video surveillance system due only to video
compression and streaming has been measured in terms of
both pixel-level segmentation and object-level tracking. Our
extensive set of experiments has demonstrated the effectiveness
of the proposed system in all the three layers. Specifically, we
can draw the following conclusions:

1) for computer-based surveillance, where low latency is cru-
cial and fluidity is unnecessary, the MoSES system is to
be configured with the adaptive playback control disabled.
In these conditions, the latency introduced in our system is
much lower than in all the compared solutions;
for human-based surveillance, the adaptive frame rate con-
trol strongly improves fluidity, at a cost of latency raise,
which remains still much lower than the compared solu-
tions;
for the tradeoff quality/compression bitrate, in terms of
both PSNR and frame losses, the proposed system outper-
forms the others; this increase in quality makes the com-

2)

3)

Authorized licensed use limited to: UNIVERSITA MODENA. Downloaded on November 4, 2008 at 05:05 from IEEE Xplore. Restrictions apply.

1154

puter-based video surveillance feasible with static camera
even at bitrates as low as 5 kbps.

REFERENCES

[1] K.-Y. Lam and C. Chiu, “The design of a wireless real-time visual
surveillance system,” Multimedia Tools Applicat., vol. 33, no. 2, pp.
175-199, 2007.

[2] I. Haritaoglu, D. Harwood, and L. Davis, “W4: Real-time surveillance
of people and their activities,” IEEE Trans. Pattern Anal. Mach Intell.,
vol. 22, no. 8, pp. 809-830, Aug. 2000.

[3] Advanced Video Coding for Generic Audiovisual Services ITU Rec.
H624/ISO IEC 14996-10 AVC, Tech. Rep., 2003.

[4] T. Wiegand, G. Sullivan, G. Bjntegaard, and A. Luthra, “Overview of
the H.264/AVC video coding standard,” IEEE Transactions on Circuits
Syst. Video Technol., vol. 13, no. 7, Jul. 2003.

[5] A. Puri, X. Chen, and A. Luthra, “Video coding using the
H.264/MPEG-4 AVC compression standard,” Signal Process.:
Image Commun., vol. 19, pp. 793-849, 2004.

[6] [Online]. Available: https://helixcommunity.org/,Last Accessed: 3
Apr. 08.

[7] A.MacAulay, B. Felts, and Y. Fisher, WHITEPAPER-IP Streaming of
MPEG-4: Native RTP vs MPEG-2 Transport Stream Envivio, Inc., Oct.
2005.

[8] [Online]. Available: iphome.hhi.de/suehring/tml/, Last accessed: 3
Apr. 08.

[9] [Online]. Available: www.intel.com/cd/software/products/asmo-na/
eng/302910.htm, Last accessed: 3 Apr. 08.

[10] [Online]. Available: www.videolan.org/developers/x264.html, Last
accessed: 3 Apr. 08.

[11] [Online]. Available: ffmpeg.mplayerhq.hu/, Last accessed: 3 Apr. 08.

[12] J. Lu, “Signal processing for internet video streaming—A review,’
in Proc. Conf on Image and Video Communications and Processing,
2000, pp. 246-259.

[13] M.-T. Lu, C.-K. Lin, J. Yao, and H. Chen, “Complexity-aware live
streaming system,” in Proc. of IEEE Int. Conf. on Image Processing,
2005, vol. 1, pp. 193-196.

[14] G. Conklin, G. Greenbaum, K. Lillevold, A. Lippman, and Y. Reznik,
“Video coding for streaming media delivery on the internet,” /[EEE
Trans. Circuits Syst. Video Technol., vol. 11, no. 3, pp. 269-281, Mar.
2001.

[15] M. Guo, M. Ammar, and E. Zegura, “V3: A vehicle-to-vehicle live
video streaming architecture,” in Proc. IEEE Int. Conf. on Pervasive
Computing and Communications, 2005, pp. 171-180.

[16] K. Lim, D. Wu, S. Wu, R. Susanto, X. Lin, L. Jiang, R. Yu, F. Pan, Z.
Li, S. Yao, G. Feng, and C. Ko, “Video streaming on embedded devices
through GPRS network,” in Proc. IEEE Int.. Conference on Multimedia
and Expo., 2003, vol. 2, pp. 169-172.

[17] Z. Liu and G. He, “An embedded adaptive live video transmission
system over GPRS/CDMA network,” in Proc. Int. Conf. on Embedded
Software and Systems, 2005.

[18] H. Chuang, C. Huang, and T. Chiang, “Content-aware adaptive media
playout controls for wireless video streaming,” IEEE Transactions on
Multimedia, vol. 9, no. 6, pp. 1273-1283, 2007.

[19] C.-F. Wong, W.-L. Fung, C.-F. Tang, and S.-H. Chan, “TCP streaming
for low-delay wireless video,” in Second Int. Conf. Quality of Service
in Heterogeneous Wired/Wireless Networks, 2005.

[20] D. Agrafiotis, T.-K. Chiew, P. Ferre, D. Bull, A. Nix, A. Doufexi, J.
Chung-How, and D. Nicholson, “Seamless wireless networking for
video surveillance applications,” in Proc. SPIE—Int. Soc. Optical En-
gineering, 5685 (Pt. 1), 2005, pp. 39-53.

[21] X. Cai, F. Ali, and E. Stipidis, “Mpeg4 over local area mobile surveil-
lance system,” IEE Collog. (Dig.), vol. 3—10062, pp. 81-83, 2003.

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 10, NO. 6, OCTOBER 2008

[22] Z.He, “Resource allocation and performance analysis of wireless video
sensors,” IEEE Trans. Circuits Syst. Video Technol., vol. 16, no. 5, pp.
590-599, 2006.

[23] P. Mahonen, “Wireless video surveillance: System concepts,” in Proc.
Int. Conf. Image Analysis and Processing, 1999, pp. 1090-1095.

[24] R. Cucchiara, C. Grana, M. Piccardi, and A. Prati, “Detecting moving
objects, Ghosts and shadows in video streams,” IEEE Trans. Patter
Anal. Mach. Intell., vol. 25, no. 10, pp. 13371342, Oct. 2003.

[25] W. Ajib and P. Godlewski, “Acknowledgment procedures at radio link
control level in GPRS,” Wireless Netw., vol. 7, no. 3, pp. 237-247,
2001.

[26] J. Brunheroto, R. Chernock, P. Dettori, X. Dong, J. Paraszczak, F.
Schaffa, and D. Seidman, “Issues in data embedding and synchroniza-
tion for digital television,” in Proc. IEEE Int. Conf. on Multimedia and
Expo., 2000, vol. 3, pp. 1233-1236.

[27] B. Schmidt, J. Northcutt, and M. Lam, “A method and apparatus for
measuring media synchronization,” Lecture Notes in Computer Sci-
ence, vol. 1018, pp. 190-202, 1995.

Giovanni Gualdi is currently pursuing the Ph.D. at
the University of Modena and Reggio Emilia, Italy.

In 2002-2003, he served as Visiting Scholar in
the CVRR Lab at the University of California, San
Diego and in 2003-2004, he was with the Mobile
& Media Systems Lab, Hewlett Packard Labs, Palo
Alto, CA, where he addressed vision-based object
tracking in sensor networks for supply chains. His
actual research focuses on video surveillance sys-
tems in mobile scenarios and object tracking under
camera motion.

Andrea Prati (M’98) received the M.S. degree in
1998 and the Ph.D. degree in 2001.

He is Assistant Professor at University of Modena
and Reggio Emilia, Italy. His research interests are
motion analysis for surveillance applications and be-
havior analysis. He collaborates to research projects
at national, European and international level. He is
the author of more than 90 papers in national and in-
ternational journals and conference proceedings.

Dr. Prati has been actively involved in the organ-
ization of ACM VSSN’06 and IAPR ICIAP’07, and
has been guest editor for special issues on IEEE TRANSACTIONS ON VEHICULAR
TECHNOLOGY and for Expert Systems.

Rita Cucchiara (M’92) received the M.S. degree in
1989 and the Ph.D. degree in 1992.

She is Full Professor at University of Modena
and Reggio Emilia, Italy. She is coordinator of the
Ph.D. Course of Computer Science and Engineering
Course, vice-dean of the Faculty of Engineering
and heads the ImageLab (imagelab.ing.unimore.it).
She is responsible for many Italian and international
projects in video surveillance, multimedia, robot
vision and medical imaging.

Dr. Cucchiara is Director of the NATO project
BE-SAFE for behavioral analysis with machine learning. She was General
Chair at ACM VSSN Workshop 05 and *06 and ICIAP °07 and Guest Editor
of a Special Issue on ACM Multimedia Systems journal in 06. She has more
than 40 journal publications and almost 100 refereed conference papers. She
is a Fellow of IAPR.

Authorized licensed use limited to: UNIVERSITA MODENA. Downloaded on November 4, 2008 at 05:05 from IEEE Xplore. Restrictions apply.

