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Chapter

Introduction

The last two decades have witnessed a surge of interest in automated video surveillance
from business and research. The first prototypes and commercial products were typically
embodied by monolithic systems, where video sensors, processing units and output
devices were tightly coupled; thanks to the significant advances of the last ten years
in algorithms, hardware platforms and networks, the paradigm of video surveillance is
increasingly drifted toward the mobility and distribution of its modules (i.e. source,
processing, monitoring, storage, etc.).

This mobile and distributed approach is what typically goes under the name of
mobile video surveillance, that is still at the present time a quite general and blurry
term, since it can assume different flavors depending on the scientific perspective from
which video surveillance is considered. Indeed, it is not a matter of debate the fact
that video surveillance touches a very broad spectrum of different scientific topics: a
non exhaustive list would comprehend disciplines from computer and electrical engi-
neering and computer science: computer vision, image processing, machine learning,
pattern recognition, graph theory, signal theory, networks design and infrastructures,
multimedia streaming, hardware design, power consumption, parallel and distributed
computation, etc.

Nevertheless, reviewing both scientific literature and business strategies, from the
broad multi-disciplinary nature of video surveillance, it is possible to identify a set of
topics that have been involved in a deeper and more direct manner than others into
this move toward mobility and distribution, namely computer vision algorithms, data
compression and communication, systems and applications for embedded hardware.

Remaining focused on these aspects, the thesis will tackle some key issues that
are strategic at the present time for an organic and consistent development of mobile
video surveillance: at first we deal with video compression and streaming, that can be
considered as a preliminary step; then we focus on computer vision techniques, as the
real core for automatic surveillance; in both cases we design and evaluate processes and
algorithms specifically aimed to succeed in mobile scenarios.

The thesis is organized as follows.

In the introductory Chapter[dwe analyze the meaning that mobile video surveillance
takes according to the different observation perspectives; then we propose a unified
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mobile video surveillance definition that is intended to be modern and comprehensive
of all the other scattered terminologies. This proposal is founded on the understanding
of what really makes “mobile” a video surveillance system. We will see that there is not
a defined and sharp border, rather it is a property that increases together with some
features of the modules that constitute the system. We will also propose an overview
of the most remarkable works that directly marked the development of mobile video
surveillance or that opened its way with preparatory findings.

The thesis is then divided in three parts, part [} part [T, part [[IT, Each part is made
of a typical introductory chapter that contains a description of the topic, the statement
of a problem that is not solved yet, a review of related works; eventually we propose
innovative solutions or methodologies to improve the state of the art solutions. After a
detailed discussion of these points, the thesis part closes with experimental results and
evaluations. There is also a concluding part (part that contains some appendices
as well.

Part[]] is focused on video streaming. In Chapter [ we analyze at first what the
requirements and the conditions for a successful video streaming are, remaining within
the context of mobile video surveillance; then we discuss about the main shortcom-
ings of general purpose video streaming architectures and systems (typically aimed for
entertainment) when applied to surveillance context.

In Chapterwe propose an architecture called Mosgs (MObile Streaming for vidEo
Surveillance) that is designed to work with low-bandwidth and ubiquitous wireless net-
works and to overcome the main limitations of the other streaming systems, namely
latency, image quality, video fluidity and frame losses. MOSES is made of two open-
source applications: an encoder (called MOVIE, Mobile Video Encoder) and a decoder
(MovVIDE, Mobile Video Decoder); the latter is devised to work on PCs and PDAs.

Evaluating the performance of a live video streaming system is not an easy task,
since it is mostly based on the perceived quality of live (not stored) videos by means
of the human receiver. In Chapter [5 we propose an innovative methodology to extract
quantitative measures on the four aforementioned aspects on any streaming system,
even on those proprietary and commercial systems that are provided with binaries
executables only (no source code) and therefore cannot be modified for performance
assessment, or those systems where it is not possible to access, modify or monitor the
network traffic.

Part [I] is focused on object tracking. This work can take very different paths
depending on the architectural set up of the mobile surveillance systems; we focus on
two extreme cases: as a first case, we propose a scenario with cameras that are installed
on movable platforms but operate being fixed; the processing is supposed to be remote
and the challenging part is to provide video compression and streaming that do not
hinder or compromise remote video processing aimed to object tracking. This scenario
is analyzed in Chapter[]

As a second case, in Chapter[§ we propose a scenario where the challenges of video
tracking are shifted from video compression and streaming to computer vision: we
tackle the problem of object tracking with a camera that is subject to unconstrained
and unpredictable motion and changing focal length (i.e. zooming in and out). We will
define a framework that translates the object tracking problem to a special case of clique
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extraction, that is solvable with an euristic coming from graph theory. Experimental
results, provided in Chapter[d are collected exploiting publicly annotated datasets.

Part[II] deals with the case of video surveillance in mobile context where it is not
feasible to rely on object tracking due to the presence of mobility and extreme visual
clutter of real-world outdoor scenarios (e.g. night vision, construction working sites,
dense vehicular traffic scenes, etc.). As a matter of facts, the approaches described
in Part [[I] would likely fail in these contexts and our proposal is to perform object
detection through appearance-based methods: this cue is indeed more robust to visual
scene clutter than motion segmentation. We exploit a state of the art classifier technique
based on covariance descriptors and apply it to pedestrian detection; nevertheless the
results in terms of accuracy and efficiency that we have collected testing this method
in the aforementioned challenging scenarios are rather poor. Therefore we propose a
twofold set of improvements: the first on the classifier side (Chapter , the second on
the detector side (Chapters [12] and [13)).

In Chapter[11] we show how the use of the relevance feedback technique along with
the training phase of a boosting classifier can improve its accuracy, without adding sig-
nificant computational burden to that procedure that is by itself very CPU-consuming.
The relevance feedback can be split in two independent parts: one is implicit (i.e. to-
tally automatic, since it exploits data obtained through background modeling), the
other explicit (i.e. takes advantage of human assessment).

In the same chapter we also propose a modification of the classifier in order to
deal with objects characterized by circular shapes, since the original method performed
quite weakly on this kind of features. In the specific, we show how the use of polar
transformations before the computation of the covariance descriptors can significantly
improve classification accuracy. We also demonstrate that the use of multi-spectral
(color) image derivatives benefits the covariance descriptor for classification purposes.
Both modifications can be successfully applied for detecting the accurate position of the
head of pedestrians. Furthermore, we extend the evaluation of the polar transformation
proposal to polymer classification in photomicrograph contexts.

The typical technique used for detecting objects in an image through a (binary)
classifier is the sliding window paradigm, that is a brute force search of the learned
pattern (e.g. pedestrian) over the whole space of possible window states. As soon as
the dimension of the state space grows (x,y position is the least parameter set, but others
can be added, like scale, aspect ratio, rotation, etc.), this approach becomes intractable
from a computational point of view. Chapter proposes to exploit a set of visual
cues, orthogonal to appearance, in order to make the sliding window approach faster;
the approach has the additional advantage to benefit detection accuracy as well. In
the specific, we propose to exploit motion information to focus the attention over areas
where motion is present or was present in the recent past and to use a rough estimation
of the scene perspective in order to reject all the windows that are significantly out of
scale.

Applying a probabilistic view to object detection, in Chapter[15we propose a Monte
Carlo sampling approach for estimating the likelihood density function of the searched
objects, using Gaussian kernels. The estimation is performed with a multi-stage strategy
where the proposal distribution is progressively refined by taking measurements into
account. For videos, this approach is plugged into a Bayesian-recursive framework which
exploits the temporal coherency of the pedestrians. This proposal is demonstrated to
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yield a detection accuracy very similar to the sliding window paradigm, but requiring a
much lower computational load.

After concluding remarks, Part [IV] contains a series of appendices. Appendiz [A]
describes the prototype devised to video secuity in construction working sites. This
application is aimed to the automatic and real-time detection of workers that do not
wear the protective helmet and exploits the techinques described in part [TI}

Appendiz [B describes the freeware implementation of MOSES with its two applica-
tions MOVIE and MOVIDE. Both softwares can be freely downloaded from the author’s
home pageﬂ

In Appendiz[C we provide for the reader’s convenience the mathematical definitions,
lemmas and a theorem for the Dominant Set framework that were not exaustively
treated in Chapter

1.1 Contributions of the Thesis

Several main contributions of the thesis are listed below.

e An up-to-date and unified definition of mobile video surveillance, that is compre-
hensive of the several scientific perspectives from which it can be observed.

e The definition of an innovative methodology for video-streaming evaluation, that
provides a quantitative measure of latency, image quality, video fluidity and frame
losses even on closed and proprietary streaming systems.

e The design of an open-source video compression, streaming and decoding sys-
tem tailored for mobile video surveillance. The encoder software works on x86
architecture, the decoder on x86 and StrongArm architectures.

e The performance evaluation of traditional object tracking algorithms fed with
videos that passed through low bandwidth networks.

e The introduction of an algorithm for structural object tracking in videos with
freely moving camera, translating the problem from the tracking domain to graph
theory.

e The use of relevance feedback for enriching the last stages of a rejection cascade
of boosting classifiers in order to improve classification performance.

e The use of polar transformation to improve classification performance for the
detection of objects with circular features.

e The demonstrated evidence that multi-spectral (color) image derivatives generate
covariance descriptors that are stronger for classification purposes w.r.t. lumi-
nance derivatives only.

e The use of a pedestrian classifier for automatic inference of scene perspective.

Yimagelab.ing.unimore.it /imagelab/~gualdi/
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e The use of motion history images and scene perspective to reduce the computa-
tional burden of object detection based on sliding window approach.

e The use of a multi-stage Monte Carlo sampling with boosting cascades for pedes-
trian detection.
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Chapter

What 1s Mobile Video Surveillance?

Thanks to the spread of both mobile devices and wireless network accessibility, Ubiqui-
tous Multimedia Access (UMA) has become a very common topic within the multimedia
community during the last few years. Research centers and telecom providers address
new, smart and efficient solutions for the ubiquitous access to multimedia data and
in particular videos, from everywhere with mobile devices (laptops, PDAs or last gen-
eration cellular phones). Possible applications of such technology include consumer
entertainment and digital TV broadcasting, video conferencing, telemedicine and tele-
manipulation, military applications, and eventually mobile video surveillance.

The meaning of mobile video surveillance is quite hazy and might assume very dif-
ferent meanings, depending on the contexts; it is often referred as a broad and generic
super-class of emerging real-time video surveillance applications where the computa-
tional load is not completely in charge of a fixed platform directly connected to the
camera. Sometimes it is the degree of motion of the front-end to give the flavor of mo-
bility to a video surveillance system. Conversely, in multimedia or telecommunication
contexts, the term mobile is generally related to the type of data connection, mak-
ing mobile video surveillance a mere extension of traditional video surveillance systems
(attended by human operators) to ubiquitous wireless connectivity.

Each of these definitions is partially correct but certainly not exhaustive, since the
word “mobile” could be easily exchanged with more specific terms like distributed,
embedded, battery powered, moving, wirelessly interconnected, etc.

Since the present dissertation deals with the research efforts spent in studying, opti-
mizing and advancing some founding parts of mobile video surveillance, the next sections
provide a unified and thorough analysis of what mobile video surveillance really is. It
is not our intention to create a new dictionary definition, but to analytically dissect the
constituting parts of mobile video surveillance systems (Section , understand what
their features and interrelations are (Section, and eventually provide an overview of
the most important contributions in the scientific literature over these topics and how
they can be contextualized into our analysis (Section [2.3)).

Publications related to Chapter ; see the list of author’s publications, page
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Figure 2.1: Sources, functional and sink modules in an example of video surveillance

system providing face recognition.

2.1 Modules of Video Surveillance Systems

The modules (or layers) of generic video surveillance systems can be grouped in three
main classes: source, functional and sink modules (see also Tab. and Fig. [2.1)):

e Source Modules: cameras are obviously the main sensors belonging to this
group, but given the multi-sensory nature of the events to capture, video surveil-
lance systems can be equipped with sensors belonging to domains that go beyond
the vision: audio sensors, ID sensors, (e.g. RFIDs, bar codes, biometric sensors
like fingerprint, etc.), or context sensors (e.g. temperature, PIR, etc.); in some
cases even storage devices can provide the functionalities of source modules, es-
pecially in off-line applications (e.g. forensic analysis), but they logically belong
to the sink category. The source module is analog, being analog the nature of
the sensed events, and it is followed by an analog-to-digital converter, in order to
perform digital signal processing. Even if the modern sensors generally integrate
the analog-to-digital unit inside the device itself, any operation from the digital
conversion onward is not to be accounted as part of the source module, but it is
typically a part of the functional processing modules;

e Functional Modules: the functional modules perform a processing task on the
input, providing an output on the same or on a different domain; they can be
divided in two further parts:

— Signal Processing Modules: they aim to modify or transform the proper-
ties and the quality of the input, without necessarily extracting knowledge



2.2 Features of Video Surveillance Systems

29

from it. In this class we include analog-to-digital converters, as well as sig-
nal encoders and decoders, streamers, but also some sensor pre-processing;
in case of video, pre-processing is typically made of low-level and context-
blind operations, such as quality enhancement (SNR), pixel-wise operations
(e.g. filtering, morphology, etc.), projective transformations (e.g. homogra-
phies), warping, distortion removal, region-of-interest operations (resizing,
cropping), etc. Pre-processing typically precedes analysis of higher complex-
ity and it can be directly connected to the sensors.

— Purposive Modules: these modules are devoted to extract information and
thus knowledge from video or other sensor data; the commercial softwares,
often called “video analytics”, are based on computer vision and pattern
recognition techniques and range from the most basic motion detection up to
the new generation of algorithms that will provide, in the (coming) future,
event detection, behavioral analysis, situation assessment and automatic fo-
cus of attention.

e Sink Modules: the sink modules are qualified by the lack of outputs to other
modules (e.g. storage devices, back-end monitors, etc.) or, in case there are
outputs, they run into different systems: for instance, the output of an alarming
module could be connected to external actuators of alarms.

We did not mention here the modules providing network functionalities: even if
they play an essential role in mobile video surveillance, in this dissertation they will be
treated as black boxes which simply provide IP network connectivity, offering specific
performance and properties (bandwidth, protocols, etc.).

2.2 Features of Video Surveillance Systems

There are three features, namely distribution, mobility and degree of motion of the
sensors, that qualify the aforementioned modules and help in defining what mobile
video surveillance systems are. We provide here an brief overview of such features:

e degree of distribution of the system, i.e. what the physical distance among
modules is. A typical distinction is:

— monolithic systems: all the modules are physically tightly coupled, from the
sources to the sinks, including also the functional modules. In this type of
systems, the network connectivity does not play any functional role, being
used at most to control the whole system. Also those multi-camera sys-
tems where the cameras, even if located at different places, are functionally
connected to a monolithic system (e.g. wide-baseline stereo pairs) can be
considered part of this group;

— distributed systems: there is physical distance among the modules, with vari-
able degree of distribution: from one extreme, where only one portion of the
system is detached from the whole rest (e.g. the video source and grabbing
of a distributed network camera system), to the other extreme, where all
the parts of the system are scattered far apart from all the others (e.g. a
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H Module ‘ Input Output
- video (cameras) analog video
- audio (microphones) analog audio
- ID (biometrics,
Source L
RFIDs, bar codes, etc.) analog/digital data
- context sensors
(Temperature, PIR, etc.) analog/digital data
- analog to digital converter | analog data digital data
- video encoder digital video bit stream
- video decoder bit stream digital video
Functional: || - (other sensors) encoder digital sensor data | bit stream
Signal - (other sensors) decoder bit stream digital sensor data
Processing || - video pre-processing video video
- (other sensors)
pre-processing digital sensor data | digital sensor data
. - video analytics video meta data
Functional: . .
. - (other sensors) analytics digital sensor data | meta data
Purposive )
- sensors fusion meta data meta data
- storage video, meta data
Sink - user front-end video, meta data
- alarms, actuators handler | meta data to actuators

Table 2.1: Modules of video surveillance systems.

totally distributed system). The network connectivity in these systems plays
a dominant role, and the properties to be aware of or to keep monitored are
bandwidth, latency, degree of ubiquitousness of accessibility (especially for
radio-mobile networks) and robustness on errors. The distributed surveil-
lance systems are also defined as remote surveillance systems: indeed, the
survey [3] points to the remote surveillance as one of the most challenging
intelligent surveillance scenario.

This distinction is not only architectural but directly affects the system func-
tionalities: monolithic systems with respect to distributed ones are obviously less
expensive, smaller, simpler and the direct connection with the source modules
makes video data available at high resolutions and frame rates; on the opposite
such systems have a limited capability of covering wide areas of surveillance and
a poor flexibility in processing parallelism. Conversely, distributed systems are
potentially more effective: sensors can be displaced over wide spaces and comput-
ing resources can be organized in a flexible manner. This added value is obtained
at the cost of a higher architectural complexity. The streaming of sensor data
among the distributed modules plays a key role in distributed systems; part [I| of
this dissertation is completely devoted to the topic of video streaming in such
contexts.

degree of mobility of the system, i.e. how does the location of the modules
change over time:
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— fizxed modules: the location of all the modules of the system never changes.
Typically, these systems are powered through external outlets and connected
by wires. From an algorithmic point of view, the video analytic modules
can take advantage by this condition, since parameters and models (e.g.
background suppression, camera geometry, camera color calibrations, etc.)
can be calculated once and then repeatedly exploited thanks to the lack of
motion;

— mobile modules: the modules (or a part of them) are not constrained to stay
at all time in the same location, but operate being fixed. Typically, the
mobile blocks are provided with wireless network connectivity, even if there
are counter-examples (e.g. [4] describes a cable-based mobile sensor architec-
ture). From an algorithmic point of view, the analytic modules will require a
bigger effort to obtain useful information from the sensed environment, since
parameters and models might need a re-computation jointly to every module
movement;

— moving modules: the physical location of the modules (or a part of them)
is not only unconstrained over time, but it is also varying while the module
itself is operative.

It is important to stress here the distinction between mobile and mowving: the
mobile module is free to move but operates while it is static, the moving module
operates in motion. An example of mobile source module might be the set of
cameras that observe a road construction site which moves from time to time: the
cameras are moved together with the site, but they are operated being in a fixed
position. An example of moving source module is a camera installed over a vehicle
for traffic patrolling and automatic license plate recognition.

The degree of mobility of the system has a strong impact on architectural proper-
ties of the surveillance systems such as the type of electric powering, data connec-
tion and processing architecture. The higher is the degree of mobility, the more
the system heads toward battery powered solutions (rather than external outlet),
small, embedded or specific purpose processor architectures (rather than general
purpose ones), wireless network connectivity (rather than wired). In addition, the
degree of mobility strongly affects the type of algorithms. Many video processing
tasks cannot be performed with moving modules for the lack of geometric refer-
ences, the reduced computational power of typical mobile processors and for the
intrinsic different nature of the sensed data. Parts [Il and [ of this dissertation
are devoted to computer vision algorithm that can effectively work when some
modules of the surveillance systems are mobile or moving.

degree of movement of the optical sensor, with respect to the body of
the camera (and not necessarily with respect to the sensed context). There are
basically two categories: static optical sensors (fixed focal length is a necessary
condition to be considered static) and movable optical sensors, such as varifocal
or PTZ (pan-tilt-zoom) cameras. A new kind of sensor, that belongs to the first
group even if the name could generate misconceptions, is the so called EPTZ
(Electronic PTZ, [5]), that exploit high definition sensors (several mega pixels)
in order to virtually reproduce the behavior of pan, tilt and zoom even if the
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camera and its focal length are static. There is another common misconception
that confuses the mobility of the whole camera body and the mobility of its optical
sensor: a clarifying counter-example is the case of a camera attached to the body
of a vehicle: because of the vehicle motion, the camera might be moving with
respect to the context, but its sensor is static with respect to the camera body.

Modules
mobility
A
moving
Mobile ~
mobile Video
Surveillance/Safety
fixed
» Modules
static monolithic distributed distribution
PTZ ;
Sensor

movement

Figure 2.2: The three features of a system for video surveillance and the place taken by

mobile video surveillance.

The three features proposed here are reciprocally orthogonal; provided this taxon-
omy, in the thesis we define as mobile video surveillance those systems that are charac-
terized by a not-null degree of distribution, or mobility or both. The more distributed
and the higher the degree of mobility of the modules, the more the system can be con-
sidered mobile; the third feature (degree of movement of optical sensor) does not bring
any contribution. Fig. gives a visual representation of the modules, their features
and where mobile video surveillance is placed according to the provided taxonomy; typ-
ical video surveillance systems are depicted in Fig. Fig. shows a potential
monolithic system, Fig. a distributed one, where each dashed block can be fixed,
mobile or moving,.

2.3 Systems, Applications and Algorithms for Mobile

Video Surveillance

This section provides an overview of the most remarkable works that directly marked
the development of mobile video surveillance or that opened its way with preparatory
findings.
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Figure 2.3: Video surveillance systems: example of monolithic system (a) and of dis-

tributed system (b). Any dashed block could be fixed, mobile or moving.

Monolithic, fixed:
this is the basic architecture of the classical video surveillance systems, being compact
and lacking of any degree of mobility. As depicted in Fig. the source module
sends data to a cascade of functional modules (from pre-processing to purposive) which
exploit computer vision techniques. Detected objects and events of interest are sent to
the sink modules that generate alarms, annotate the videos or store them for future
tasks of posterity logging. This basic architecture is well established from several years:
among the first important experimentations, we find the VSAM project [6] financed by
Darpa (as we will see later in this section, the VSAM project has expanded from a fixed
system to a very generic moving and distributed system). The videos, the annotations
and the alarms are sent to the connected back-end. Being the cameras fixed, a reference
model of the scene can be inferred or reconstructed to exploit background suppression
for segmenting moving objects; the popular proposal of Stauffer and Grimson [7] uses
Mixture of Gaussians for background modeling and suppression; a simplified method
was proposed in W4 [8]. After these seminal works, tens of modified solutions were
proposed in order to account for additional issues, like shadows [9], multi-layer motion
segmentation [10] and many others. After segmentation, discriminative appearance-
based tracking is often adopted [3}/11-13], where the appearance (color, texture, etc.)
of segmented data is matched against the previously segmented and tracked objects.
Still inside the monolithic systems, but closer to the border with distributed ones,
there are video surveillance systems based on multiple cameras that are typically wire-
connected to a central video grabber. In such systems the labels of the objects (i.e. the
identity) are to be kept consistent not just along the time but also across the camera
views. An example of approach for consistent labeling with overlapping views is [14],
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where auto calibration is adopted and bayesian inference allows the discrimination over
uncertainty due to overlapped views of groups of people. In traditional fixed systems,
on top of static cameras, PTZ cameras are employed also. In such cases, it is possible to
construct a reference mosaic in order to adopt detection methods similar to background
suppression [15], or activity maps, to focus the PTZ camera on specific regions of interest
out of the complete viewable field [16]. Otherwise, knowing the camera motion, the
viewing direction of the PTZ camera can be synchronized and guided by the information
extracted with the static cameras [17].

Distributed, fixed:
the concept of distributed surveillance system, synonym of remote surveillance system,
is several years old [1§]: at that time, the video analytics was performed at the camera
side and only meta-data was sent over the network to the control center. A much wider
distributed system was proposed under the name DIVA [19] which compressed and
streamed the video for remote analysis. Another work that exploits the DIVA framework
is |20], where the video streaming of some cameras flows on wireless connections. Many
proposals have been defined in this area, among the others [21,122]: the latter provides
some considerations on the future of distributed (and implicitly fixed) systems.

In fixed systems, either monolithic or distributed, the most used technique for the
detection of objects is undoubtedly the foreground object segmentation through back-
ground suppression.

Monolithic, mobile:

there is not much difference between these systems and the monolithic, fized ones, a part
for the fact that the video analytic algorithms need to be working in mobile contexts.
Indeed the architecture of Fig. is correct also in this scenario, with the addition
that the whole block is installed on a mobile platform. The computer vision techniques
that exploit prior knowledge of the context and the scene (e.g. techniques based on the
scene geometry or on the background image), can be used in this mobile contexts only
if they are given the ability to be properly re-initialized or updated. An example of
geometry recovery used for people detection and counting that fits mobile scenarios, is
the one depicted in 23], where the geometry calibration parameters of the whole system
is re-computed using a fast and semi-supervised approach.

Distributed, mobile:
a distributed and mobile system often requires the introduction of wireless network
communications, introducing limitations in the bandwidths: this can pose serious prob-
lems to video analysis, in case it is performed after the compression; [24] addresses
tracking on low frame rate videos, well suited for compression that reduces temporal
resolution. On the side of compression that degrades video quality, Chapter [7] discusses
the performances of object tracking on highly compressed video data.

Monolithic, moving:
those stand-alone systems that offer an unconstrained mobility, like portable and hand-
held systems (e.g. smart-phones, laptops, etc.) usually belong to this category; com-
puter vision applications limited to be fully functional within the computational borders
of this kind of platforms were considered unfeasible up to few years ago, but are now
spreading and there is actually a strong research activity in this area. |25] tackles face
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detection over PDAs, dealing with the problems of limited computational power and
power consumption; [26] uses computer vision techniques over a smart phone for the
visually impaired people, but it does not hinder the applicability to visual surveillance.
Regarding the video analysis over the monolithic moving systems, the segmentation of
moving objects is completely different from what described up to this point. Frame
differencing becomes useless in most of the cases (background-foreground separation is
still possible but it needs further processing: [27] is an example of foreground segmenta-
tion using KDE techniques), and detection-by-tracking instead of tracking-by-detection
is often adopted [28]: after a selection of the region of interest, several probabilistic
tracking methods can be used [11], such as Kalman and particle filters, mean-shift,
etc. An approach based on contour tracking that fits monolithic mobile systems is de-
scribed in [29]. [30] proposes a unified framework for handling tracking with occlusions,
non-overlapping sensor gaps and moving sensors that switch fields of regard. All the
augmented reality works based on the SLAM |[31] represent the state of the art of what
can be done on geometry recovery in monolithic moving systems.

Distributed, moving:
given the wide complexity of this last sub-portion of the mobile video surveillance sys-
tems, we divide it in several classes:

e moving sources, fixed sinks: robot-surveyor applications for assessment in disas-
ter or extraordinary scenarios were studied even in the 1980s: for example [32]
deals with remote recognition of nuclear power-plants with human-based remote
optical analysis; these applications did not employ any computer vision algorithm
because of the limited computational capabilities of the processors at that time.
Conversely, in modern applications it is possible to depict three very different
cases, depending on the position of the functional (and especially of the purpo-
sive) modules:

— the purposive module is on the source side, that is moving and typically has
limited computational power, physical size and electric power autonomy; on
the opposite, the advantages are: process uncompressed video data, (possi-
bly) stream over the network only meta-data, offer an architecture that is
scalable under the processing point of view (the system can easily handle the
increase of video sources, since each one has its own processing unit). This is
the approach based on smart cameras: an interesting platform of smart cam-
eras for video surveillance, equipped with grabbing, pre-processing, encoding
and wireless radio mobile network card, is described in [33]; also [34] shows
a similar example of smart cameras, mounted on autonomous robots. As we
mentioned at the beginning of the section, VSAM [6] belongs to this cate-
gory also: it streams over wireless network only “symbolic data extracted
from video signals”, that is, meta-data. Actually, VSAM is a very wide
project and deploys source modules of the three kinds: fixed, mobile and
moving (airborne).

— the purposive module is on the sink side, that is fixed: the computation can
typically rely on fixed and unconstrained processing platforms: systems with
mobile sources that are based on very complex computer vision techniques,
need to rely on this kind of set up. The tracking algorithms proposed in [35]
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or in Chapter [8|are a couple of examples. The network links, used to transmit
the whole video from the sources to functional modules can be a critical part:
the (often limited) bandwidth must support video compression with a quality
that is to be sufficient for accomplishing video processing; in some cases it is
possible to adopt compression schemes to improve its efficacy (as in the case
of airborne videos [36]). Anyway, the recent increase in bandwidth of wireless
networks (WiMAX 802.16 is just an example) opens the way to new scenarios.
Transmitting the whole video, and not just meta data, has the advantage that
video itself can be used for multiple purposes; for instance, storage, human-
based /human-assisted surveillance; these tasks cannot be performed when
just meta data is streamed over the network. In case video applications do
not need the streaming of the whole video (e.g. remote face recognition [37]),
even limited bandwidths can suffice. In any case, the set-up with a central
processing unit positioned at the sink side looses scalability.

— the purposive module is split, partially over the source and the rest over the
sinks. This can be a solution for some specific cases where it is possible
to operate a clear division of functionalities inside the purposive module
(e.g. low resolution processing at source side and spot-processing on high
resolution image patches at sink side). [38] describes and analyzes the best
techniques for optimized processing distribution and partition.

o fizxed sources, moving sinks: the purposive module for this category is typically
on the side of the source, therefore being able to benefit from the fixed site (un-
constrained physical dimensions and power supply) and from the availability of
uncompressed video to process; moreover the architecture remains scalable. The
sinks are usually reduced to human assisted back-ends and often use web-services
techniques [39,40]. Some works analyze strategies for the processing of fixed cam-
era videos and for the tuning of video data transmission to mobile sinks in order
to optimize the quality perceived by human operators [41}/42].

e sources and sinks are independently moving: the wireless data communication will
cross two radio bridges, suffering more latency and being more prone to network
errors: in Chapter [5| we briefly evaluate the performance of video streaming under
these conditions. This is the only scenario where it is reasonable to keep the
functional module fixed (and therefore detached from both sources and sinks),
in order to exploit all the architectural advantages of fixed modules. iMouse
[43] depicts a generic architecture based on multi-sensory surveillance where the
camera sources are mounted on a moving robot and the back-end sinks are moving
smart phones; instead of moving robot, [44] depicts a mobile video server based
on web-services for cellular phones; [45] describes an architecture for vehicle-to-
vehicle video streaming based on WiFi, while [46] a PDA-to-PDA streaming based
on GPRS.
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Chapter

Introduction

The video streaming for mobile video surveillance presents several technological chal-
lenges. On the one side, videos pose serious problems in terms of both amount of
data transferred on the network and computational resources. On the other side, mo-
bile devices and Ubiquitous Multimedia Access scenarios require accessibility through
different and often limited wireless networks, either 802.11 WiFi, 3G networks such
as HSPA (High Speed Packet Access) and UMTS (Universal Mobile Telecommunica-
tions Service), or even 2/2.5G networks such as GPRS (General Packet Radio Service)
or EDGE-GPRS (Enhanced Data rates for GSM Evolution). These conflicting require-
ments - high data volumes and limited resources - emphasize the need for efficient codecs
for both downloading and streaming applications. Given our main focus on video data,
the goal is to allow UMA services to maintain a quality sufficient for both human and
automatic surveillance.

Recalling the three-layer architecture depicted in Fig. with source, functional
and sink modules that are distributed and linked together via IP-based connectivity,
the focus of this thesis part is kept on the video streaming process that takes place
from source to the functional module (for automated video surveillance) or to the sink
modules (for human-based surveillance or for data storage). As we mentioned in Section
this is not the only possible architecture for mobile video surveillance: the growth
of smart cameras makes the shifting of some processing tasks on-board on the local
encoder side more feasible and interesting. In general, part of the computer-based
video surveillance algorithms could be implemented on the side of the source module,
with the twofold advantage of reducing the transmission bandwidth and working with
uncompressed images. However, our focus will be kept on a first layer that performs
video encoding and streaming only, demanding any surveillance task to the further
steps: this solution remains the most flexible since no specific assumptions are made
on the applications implemented on the functional and sink modules. In our work the
first layer is embodied by a standard PC architecture, being aware that standard video
encoders can often rely on embedded hardware implementations to support real-time
compression.

Despite the general architecture, we will focus on the most challenging case in which
the video source is provided by a live camera and acquired on demand. There are many

Publications related to Part \aﬁﬁﬁ ; see the list of author’s publications, page m
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examples of interesting applications; in the case of mobile-to-fixed scenarios: a camera
mounted on a police vehicle patrolling a city area, a robot equipped with a camera for
monitoring disaster areas, a security camera used in a construction working site that
moves over on daily basis; any of these might stream the live videos to a control center;
vice versa the case of fixed-to-mobile could be embodied by a police officer viewing
through his PDA the video collected by a camera installed inside a building (or by a
camera mounted on a moving vehicle for the mobile-to-mobile case).

In Chapter {4 we propose a streaming system called MoOsEs (MObile Streaming for
vidEo Surveillance), that supports video streaming in different conditions, aiming at low-
latency transmission over limited-bandwidth networks. Additionally, the video stream
is provided with a sufficient quality to be correctly analyzed by both human-based or
computer-based video surveillance layers. To this aim we propose a suitable optimization
of the streaming process with an adaptive control of the streaming parameters. MOSES
is made of two applications: the first is called MoOVIE (MObile VIdeo Encoder) devoted
to live video grabbing, compression and streaming, the second called MOVIDE (MObile
VIdeo DEcoder), devoted to video down-streaming, decompression, and playback.

MOSES is built upon open-source software components. The reason is twofold. First,
the availability of the complete source code permits modifications and optimization at
any level. Second, most of open-source software or components can be cross-compiled on
different architectures and/or operating systems with just specific adjustments: cross-
architecture software is required since MOVIDE is meant to work not only on PCs but
also on PDAs.

Evaluating real-time video streaming is neither simple nor clearly defined. In Chap-
ter [5l we propose a new methodology with an effective image analysis step to provide
comparative performance evaluation over four key parameters, namely latency, image
quality, video fluidity and frame losses. Eventually, we compare results achieved with
Moses and other streaming systems over such parameters.

The rest of the thesis part is structured as follows. In the next section we define the
system requirements for effective human-based and computer-based video surveillance.
Then, in Sections [3.2] and we review some commercial and scientific approaches
to video streaming. Chapter [4] presents the full details of MOSES, reporting on the
video encoder layer MOVIE (Section , on the video decoding layer MOVIDE for PC
platforms (Section and for PDA platforms (Section . Performance evaluation
(Chapter [5|), contains five sections: Section describes the proposed methodology,
Section [5.2| provides a detailed description of the test bed and the operational conditions
used during the tests, and Sections and [5.5] for experimental results.

3.1 System Requirements

Mobile video surveillance calls for live video streaming in order to dispatch an on-line
view of the controlled scene. Beyond this basic feature, there are other requirements
(listed in Tab. that need to be considered in order to define a successful mobile
video surveillance system.

Given the requirement #1 the video coding must be sufficiently adaptable to dif-
ferent wireless network supports and not only to the ones with large bandwidth (such
as WiFi or UMTS/HSPA), that do not still offer ubiquitous coverage. In this work
GPRS/EDGE-GPRS network has been selected as reference mobile data service, since
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Video Surveillance
# Requirement Human-based \ Computer-based
1 | Ubiquitous accessibility vV vV
2 Low latency vV vV
3 High image quality preferable V
4 Video fluidity preferable -
5 | No frame skipping / loss - vV
6 High frame rate - preferable

Table 3.1: Summary of requirements for streaming in mobile video surveillance systems.
'y and -’ indicate 'required’ and 'not required’, respectively.

it provides wide coverage over the European territory. This is merely an implementa-
tion choice that does not compromise the generality of the system which can provide
video streaming over any IP-based network. Given the effective bandwidth available
for EDGE-GPRS and GPRS connections, MOSES will be tested on 80 and 20 Kbps,
respectively. Moreover, in mobile video surveillance a multiple delivery of video sources
could be requested, therefore tests on 20 and 5 Kbps will be performed to simulate a
four cameras video delivery. The requirement #2 of low latency is necessary because
surveillance systems should exhibit high reactivity to changes in the scene. Moreover,
mobile video surveillance needs high image quality (requirement #3) and good video
fluidity (requirement #4). Both are preferable for a satisfactory human-based surveil-
lance and the first is mandatory in computer-based surveillance to allow a correct video
analysis and scene recognition. This process is very sensitive to noise and visual con-
ditions and it is, thus, greatly influenced by the coding artifacts or the quantization
introduced by the video compression: Chapter [7]is completely devoted to this topic and
it will be clear at that point that #3 is a crucial parameter. The tracking algorithms
are often based on object-to-track association on frame basis and they usually assume
a fixed frame rate for effective status predictions. Therefore the requirement #5 (no
frame skipping) becomes necessary. Finally, the search area for a tracked object in a
new frame is generally proportional to the displacement that the object might have
between two consecutive frames: thus requirement #6 (high frame rate) prevents an
excessively-enlarged search area.

Part of the listed requirements are necessary for the majority of UMA services but
the last-generation commercial streaming systems typically fulfill them just in part. Our
system MOSES, on the other hand, is specifically designed to fulfill them all. It is based
on H.264/AVC (MPEG-4 part 10) [47-49], suitably devoted to work on low-capacity net-
works by means of several improvements to make the streaming adaptive. H.264/AVC
guarantees a better trade-off between image quality and bandwidth occupation with
respect to MPEG-2 and MPEG-4 part 2 [49].

3.2 Video Streaming Solutions and Components

Several video streaming solutions handle all the steps of the process, namely video
grabbing, encoding, network streaming and video playback. Two examples of popu-
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lar off-the-shelf suites are Microsoft Windows Media® [[| and Real Networks® [l based
on Helix technology EL The encoding layers of such systems are intended to provide
streaming server capabilities, i.e. to handle intensive video broadcasts. They require
solid processing platforms and/or server-oriented operating systems. For example, Win-
dows Media Streaming Server runs on Windows Server OS only. The main goal of these
proprietary solutions is to provide massive access to both live and stored video resources
for entertainment purposes, rather than ubiquitous, uni-cast video streaming as required
for surveillance purposes. For this reason their latency is usually rather high (as shown
in Chapter , being in conflict with requirement #2. Moreover, since the typical users
are non-technical practitioners, their settings are often pretty limited mainly in terms
of video coding and network streaming. Regardless of these considerations, their per-
formance in mobile video surveillance conditions are not negligible. We measured the
overall streaming performances of both Windows Media and Real Networks, since they
both provide a video player for PC and PDA. Numerical results will be discussed in
Chapter

Skype® E| probably represents the most popular freeware tool for live multimedia
streaming, addressing audio and video. The overall performance of this system is very
interesting, though it has some limitations for mobile video surveillance. In particular,
the settings flexibility is even coarser than the aforementioned tools since almost ev-
erything is automatically handled: for instance, grabbing source, frame size and rate
and video bitrate are not adjustable. This approach makes the system very easy to be
used for audio/video calls but also very rigid and certainly not flexible enough to be
used for our goals. Moreover, according to the methodologies that will be presented in
Section [5.1} analytic latency measurement becomes unfeasible since the software cannot
stream video files. Skype is meant for audio streaming, that cannot be disabled in favor
of video, producing a bandwidth waste that becomes a critical issue on radio mobile
connections. Finally, the video player is currently implemented in the PC version only.

On the side of open-source software, VideoLan Client (VLC) E|is probably the most
renowned available tool. Differently from all previous examples, VLC is designed for
research or free use and not for commercial purposes; it provides a very flexible and
refined setup, that reaches the lowest level of details for video grabbing, coding and
network streaming. It supports many video compression standards (including H.264)
and streaming technologies. However, the system shows strong limitations that conflict
with many of the requirements of our project: video latency (requirement #2) can
be kept pretty low only at the cost of strong video quality degradation.; regarding
bandwidth usage, the H.264 video bitrate control is neither very strict nor optimized;
H.264 streaming is allowed only on MPEG TS (Transport Stream) encapsulation and
this is demonstrated to be a drawback when working with low bandwidths [50], since
the stack MPEG-TS/UDP/IP introduces more than double the overhead of the stack
RTP/UDP/IP. Eventually, the VLC parameter control of the H.264 video coding gives
access to the full palette of parameters but it is not precise in handling them correctly:
artifacts and strong image quality degradation are introduced as soon as the setup

"URL: www.microsoft.com/windows/windowsmedia. Every URL provided in this section was last
accessed on Jan 20th, 2010

2URL: www.realnetworks.com

3URL: https://helixcommunity.org

4URL: www.skype.com

SURL: www.videolan.org
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deviates from the standard conditions in order to be optimized for low bandwidths.

An alternative solution is to design and develop an optimized system that specifically
targets mobile video surveillance, using existing components where suitable.

The most complex blocks in the video streaming pipeline are video encoding and
decoding. Given the choice for H.264 codec, we compared existing encoding engines
according to their computational performances and parameters flexibility. Performance
is required since the encoding must be performed in real time and conversely H.264 can
be computationally very demanding if configured on high encoding profiles; flexibility is
needed to tune the encoder for addressing different needs, such as high encoding speed
or high image quality.

JM E] is the H.264 reference software: it is open source, completely flexible and mod-
ifiable, but has very limited computational performance. Intel Integrated Performance
Primitives (Intel IPP) EI is a suite of libraries that offers broad digital signal process-
ing algorithms, including also video coding and specifically H.264. Such libraries are
optimized but not open source and can be executed on Intel processors only. X.264 ﬁ
represents today one of the (open source) H.264 encoders with best performance and
highest completeness over the H.264 standard and for these reasons it was chosen as the
software reference for our video encoder MOVIE.

Regarding the choice for H.264 decoder, the performance issue becomes very restric-
tive since we want to address not only standard x86 architectures, but also CPUs with
limited computational power, like StrongArm architectures of PDAs. The same consid-
erations mentioned on the JM and Intel IPP H.264 encoders are valid for their decoder
tools. From the wide variety of other decoders, many being open source, the choice is
limited if we consider only those that can be compiled on both PC and PDA. Our se-
lected decoder for MOVIDE is based on FFMPEG F_T], because of performance and ability
to handle most of the H.264 coding profiles; it does not provide a ready-to-use PDA ver-
sion, but since it is open source it can be appropriately modified for that. This library
has the additional advantage to offer a network down-streaming layer implemented for
many different protocols.

3.3 Scientific Contributions to Streaming for Mobile
Video Surveillance

Video streaming has reached its peak of interest in the scientific community in the
last ten years. A survey paper on this topic [51] reports and discusses the relevant
signal processing issues and proposes possible solutions. Regarding video streaming, re-
searchers address the problem from several different perspectives. For example, some of
them tackle the optimal allocation of resources (for instance computational resources of
video servers [52], or power resources to optimize consumption and video quality [53]).
Another set of papers focuses on the system architecture, in terms of both communi-
cation model (as in [54], where the analysis is based on Real Networks products, but
without considering low-capacity networks) and data synchronization (as in the case
of [45] where an inter-vehicle communication for live video streaming is considered,

SURL: iphome.hhi.de/suehring/tml
"software.intel.com/en-us/intel-ipp

SURL: www.videolan.org/developers/x264.html
9URL: ffmpeg.org
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even though based on 802.11 WiFi networks and thus not suitable for generic mobile
video surveillance). Some works propose systems for video streaming over low-capacity
networks, such as GPRS. For instance, Lim et al.in [46] introduces a live video stream-
ing system on GPRS network, based on MPEG-4 compression and containing several
computational optimizations for working on PDAs. It can achieve a frame rate of 21 fps
at the encoder side and 29 fps at the decoder side for transmitting a QCIF (176x144)
video at 128 Kbps. However, their system drops to 2-3 fps when transmission is over
GPRS. Moreover, no information on the latency of the system is provided. The work
in [55] tackles the problem of transmitting real-time videos over GPRS by using frame
skipping. Chuang et al.in [56] deals with adaptive playback for video streaming over
simulated 3G networks: a statistical model on both departure and arrival processes is
built in order to avoid buffer underflows and preserve playback smoothness. Even if
the paper does not deal clearly with latency measurements and supposes an additional
payload for timing data exchange, the idea of adapting video playback to optimize the
buffer management will be used also in our work. Eventually, many works tackle video
surveillance over wireless networks but most of them do not address low-capacity net-
works. [57] analyzes some key issues of mobile video surveillance, such as networking
requirements and digital image transmission; moreover, similarly to what we propose
in Chapter [7} the author evaluated the effect of error-prone transmission and coding
artifacts on the final video surveillance applications (specifically, intruder alarming and
object recognition). However, mainly due to the immaturity of the technology in 1999,
no effective proposal to video streaming for mobile video surveillance over low-capacity
network is really proposed in the paper. Agrafiotis et al. [58] described the video trans-
mission aspects of the European project WCAM (Wireless Cameras and Audio-Visual
Seamless Networking) and made an excellent work in evaluating the performance (in
terms of jitter buffer sizes, packet error rates, etc.) of H.264 using TCP/IP or UDP/IP
stacks. However, this work is based on 802.11b/g networks only. Cai et al. [59] re-
viewed video coding techniques for wireless networks, but also in this case the test-bed
demonstration system is based on a 802.11b. One interesting example of video trans-
mission over low-capacity networks and with the specification of low latency is reported
in [60], but this work is focused on video streaming and not on successive video pro-
cessing. Lam et al.presented a very interesting work [61] with a final objective similar
to ours. However, in their case frame skipping is functionally employed to fit in the
low-bandwidth requirement with an intelligent filtering of frames — bandwidths close to
5 Kbps are sustainable only through a very aggressive frame skipping. As mentioned
above, this could complicate the tracking task and, moreover, requires to move part of
the computational load on the local side of the camera.
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System Proposal: MOSES

The following Section describes MOVIE, the video encoder layer (developed for PC-
based hardware only). The decoding layer MOVIDE has been designed in two different
versions, depending on the computational resources of the client, namely PC-based

(Section and PDA-based (Section [£.3).

4.1 MOVIE: the Video Encoder

The typical encoder layers of streaming systems are made of three basic blocks, namely
video grabbing, encoding and network streaming, plus further controlling steps. Our
encoder layer aims to provide high flexibility in the control of video source and com-
pression and to keep the latency and the frame-loss rate at lowest levels. The following
peculiar aspects of the architecture (depicted in Fig. were specifically designed to
attain such objectives:

e multi-threaded processing and pipeline: video grabbing, encoding and network
streaming are handled by dedicated threads decoupled through circular buffers.
Having asynchronous threads optimizes the processing since the execution of each
one is basically independent from the others; this allows the implementation of
a pipeline that reduces latency compared to plain serial processing. The original
X.264 source code was modified for this purpose;

o low buffer occupancy: buffering is necessary to avoid video data losses due to
thread decoupling; as drawback, it introduces some latency and for this reason
the application is tuned to keep buffers at the lowest occupancy. The best way to
achieve this is to set the grabbing frame rate equal to (or slightly lower than) the
average encoding frame rate; the buffering between encoder and network streamer
is not crucial since the second task, being light weighted, manages to keep the
buffer always close to zero occupancy;

o UDP streaming: raw H.264 encoded stream is seamlessly forwarded to the network
streamer that packetizes it into UDP datagrams of fixed byte size. UDP is prefer-
able with respect to TCP due to its prioritized dispatch over the network in case
of congestion, but this comes at the cost of possible datagram loss. Nevertheless,
thanks also to the Automatic Repeat-reQuest (ARQ) mechanism implemented on
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Figure 4.1: Functional scheme of MOVIE. For memory mapped files see Appendix

the Radio Link Control (RLC) [62], our experiments show that the transmission
over EDGE-GPRS or even GPRS is very robust since the rate of lost datagrams
is extremely low and none is received out of order. For this reason, and for the
fact that MOSES aims to deliver only video streams with no additional audio or
text to be synchronized with, we decided to use raw UDP instead of RTP/UDP.

As shown in Fig. the development was partly based on C#/.NET Framework and
partly on native C/C++ modules. In particular, the use of the .NET Framework is
devoted only to non-intensive tasks (GUI and controlling layer).

4.2 MOVIDE: the Video Decoder for PC platforms

In case of PC-based client, the decoder layer has the functional scheme reported in
Fig. The computational demand of H.264 for decoding is definitely lower than
encoding, therefore the most critical issue for this PC-based layer is not really the
optimization of computation rather the efficient network buffering and the data flow
management; in fact, even if video grabbing frame rate (encoder side) and playback
frame rate (decoder side) are set to the same values, the datagram generation rate
(encoder side) and the datagram extraction rate (decoder side) might differ from time to
time for several reasons, such as wireless network instability, varying CPU load (either
on encoder or decoder side) due to operating system tasks, video coding (changing
video scene complexity), and so on. Specifically the following procedures were adopted
to minimize latency and obtain the best of the video quality from the network stream:

o dynamic buffer sizing: if the datagram generation rate remains higher than the
datagram extraction rate for a sufficiently long time, the buffer might fill up and
every datagram received afterward would be lost (buffer overflow). We propose
a simple algorithm that dynamically adapts the buffer size: it either doubles the
buffer size when this gets filled up beyond a value x%, or halves it when its
level decreases below (100 — x) %. x is computed empirically and depends on the
network conditions, the buffer initial size and the video bitrate;

e adaptive playback frame rate: even if the latency time is, for obvious reasons,
directly related to the occupancy of the network buffer, tuning the system to keep
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Figure 4.2: Functional scheme of MOVIDE in the PC version.

it as empty as possible would result in an uneven trend of the playback frame
rate, due to buffer underflow. Therefore, to achieve the best trade-off between
low latency and good fluidity, the block for playback frame rate control (see Fig.
implements a set of rules to keep the buffer occupancy between two values
Ty, and Ty (typical values are T, = 5% and Ty = 15% of the buffer size). In
general, the playback frame rate F' R;layback at time t is function of two values:
the buffer occupancy Bt.. (that needs to be kept between Ty, and Ty) and the
discrete derivative of the buffer occupancy AB!... The adaptive control can be

summarized as follows:

FR;Jl_aiyback : (1 + P) if ABECC > W

FR g pack = F R%Za back * (1 = 1) if ABthc < - weo 1)
FRplaiyback if (Bocc’ABocc) optimal
F R;l_ayback (1T+ %ABECC) otherwise

where W defines a window of AB!_. (typical value is a few thousandths), which
represents the limits for a sustainable variation of the buffer occupancy; if the
‘ABEJCC} consistently exceeds W, the system will end up in buffer overflow or un-
derflow in a short time. p is the reactivity of the adaptive control (0 < p < 1
but typical value is approximately a few hundredths). The closer p gets to 0,
the weaker the adaptive control is; eventually the control would be disabled with
p = 0. The reactivity increases together with p, eventually ending up in an unsta-

ble system. The pair of values (Bt AB! ) is considered optimal in the following

oce? occ
cases:
T < Bécc <Tyg A AB(t)CC ~0
(B, ABL..) optimal if: ¢ B, > Ty AN —W<LABL,. <0 (4.2)
B, < Ty, AN O<AB! . <W

In other words, the control reacts increasing (decreasing) the playback frame rate
when the buffer occupancy increases (decreases) too rapidly (‘ABt ‘ > W).

occ
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When the conditions are optimal the playback frame rate is kept constant. In
all the other cases, the frame rate is slightly adjusted with a factor proportional
to the slope of variation of the buffer occupancy;

e decoder-display coupling: in the absence of synchronization between the decoder
and display threads, it may happen that a frame is correctly decompressed but not
displayed, therefore lost, because it is overtaken by a decoded frame which follows
(frame overwriting effect). Buffering the frames flow would solve the problem
but it would also introduce some latency. A different approach, that completely
avoids buffering, is to introduce a simple synchronization decoder-display that, just
before a frame gets overwritten, delays the decoder until the frame is effectively
displayed. Maximum delay is set to:

1

<2 ) FRZZayback)

As shown in Chapter [5 this solution massively reduces frame losses and, even
better, has a positive effect on the latency.

4.3 MOVIDE: the Video Decoder for PDA platforms

Fig. shows the scheme of the PDA decoder. Differently from the PC version, the
successful implementation of the PDA-based decoder requires peculiar optimizations,
given the limited computational power of these devices. Specifically, the most critical
issues are, together with video decoding and network buffering, video data exchange
between processes and video display. The most suitable operating system to rely on
in such tight conditions would be Linux for embedded systems, given the important
advantage of being open source, thus enabling low-level control on memory, network
and management of processes and services. Unfortunately, the limited support for
most of the devices and peripherals (such as GSM/GPRS modems) prevented us from
adopting this solution, opening the way to Windows CE. Each module and the most
important functionalities designed for a successful PDA-based decoder follow:

e optimized display control: in the case of PDA-based solution, writing video data
directly on the graphic card memory is computationally very convenient rather
than relying on the standard functions of the operating system. For this reason
the display control is based on GAPI (Game API)E| and Direct Drawﬂ instead
of GDI+E| functions. For a further speed up of this control, we made use of pre-
calculated look-up tables for image rescaling and 90-degrees flipping, used to fit
the desired playback frame size and orientation;

e inter-process communication: the decoding and the GUI modules are kept com-
pletely detached in their scheduling (i.e. they run not simply on two threads, but
on two separated processes), so that each processing flow will not interfere with
the other (for example, when the GUI module calls the garbage collector). Since

"URL: msdn.microsoft.com/en-us/library /ms879884.aspx
2URL: msdn.microsoft.com/en-us/library /ms879875.aspx
3URL: msdn.microsoft.com/en-us/library /ms533798(VS.85).aspx
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Figure 4.3: Functional scheme of MOVIDE in the PDA version.

a modest QQVGA (160x120) video, 24 bits RGB colors at 10 fps, would gener-
ate a 4.6 Mbps bandwidth communication, it is obvious that the Inter-Process
Communication (IPC) must be extremely efficient to avoid frame skipping and
preserve video fluidity. Data exchange through either local file system or local
UDP loop-back is not feasible since both these methods cannot sustain such a
high data transfer rate without compromising the overall performance of the sys-
tem. Moreover, since file systems are actually based on flash memories which have
a finite number of erase-write cycles, IPC based on file system would deteriorate
the support in a short time. The most efficient IPC method to be used is then
memory-mapped files (MMFs), i.e. a virtual file on RAM memory. For details see
Appendix [B|l This approach allows the achievement of performance comparable to
shared memory between threads;

adaptive playback frame rate: the implementation of the adaptive control described
in the PC-based decoder needs to be revisited to be successful on a PDA. Since
Windows CE does not allow querying of the occupancy of the UDP buffer, an
application buffer on top of the UDP operating system buffer must be added (see
Fig. . In addition, the algorithm presented in Section through Eq. and
cannot be successfully implemented on a PDA, because the computational
resources do not sustain the required frame rate in case it needs to be firmly
increased (usually when AB!.. > W). For this reason the PDA decoder layer
employs a light-weighted control based on the key task of keeping the UDP buffer
occupancy as low as possible (but greater than zero) in order to minimize the
playback interruptions due to buffer underflows. Given a value € that is a few
thousandths above 1, the control acts as follows:

FRUL /e if AB!.,.=0
t _ layback
FRplayback - { FR%LQI'U ac 2 if AB?C >0 (4'3)

playback € occ
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Being € slightly above one, the reaction in the case of buffer occupancy greater than
0 is stronger than in the other case. Analytical results will be given in Section
where € = 1.002 was used. This control does not claim to be an optimal algorithm
for playback frame rate adaptation (for a thorough analysis of adaptive playback,
refer to [56]) but our goal is to verify that even on reduced-power processors a
simple adaptive control can significantly increase the fluidity of the video playback
without the need of further buffering.

Regarding the dynamic buffer sizing and decoder-display coupling, the PDA decoder
implements the same procedures described for the PC decoder.
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Performance Evaluation

5.1 A Methodology for Video Streaming Assessment

Evaluating the performance of a live video streaming system is not an easy task, since
it is mostly based on the perceived quality of live (not stored) videos by means of the
human receiver. In accordance with our requirements, we propose a methodology to
extract quantitative measures on image quality, video latency, frame loss and wvideo
fluidity. Specifically:

1) Image quality: it can be easily measured with PSNR (Peak Signal-to-Noise Ratio)
that gives an idea of the distortion introduced by the coding and transmission process.
Even though this is not completely corresponding to the way our human visual system
evaluates the quality, it is an easy and well-known method to measure image quality [63].

2) Video latency: there are not commonly accepted methods for measuring the latency
in an analytical way. An approximate measurement can be obtained by synchronizing
the encoding and the decoding unit on the same time server, and modifying the encoder
so that it dispatches, together with the encoded frames, also the time stamp of their
grabbing. Then, after having retrieved the time stamp of display of a decompressed
frame, the decoding unit deducts the latency by time differencing [64]. This procedure
has several drawbacks: on one side the synchronization with the time server should be
frequent, in order to have precise time gap measurements and this would be a waste of
network bandwidth; moreover embedding a time stamp for each frame would result in
further bandwidth waste. In addition this kind of measurement requires modifications
to core functions of the video grabbing, networking and displaying, therefore it is only
feasible on open source code and cannot be employed on closed systems such as Windows
Media and Real Networks, that we want to compare with.

Consequently, an alternative way to measure the latency must be used. Schmidt
in [65] presents an interesting approach to measure the synchronization of synthetic
multimedia data (video, audio and text) through external observation of media players
using several sensors: we modified and extended the approach for real video data. The
frame number is superimposed on each frame of a recorded video. We then play the
video both on the encoding unit, and, after having passed it through compression and
streaming, also on the decoding unit.
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Let us call ¢ a given time instant, F'Ngp. (f) and FNg.. (f) the frame number
shown on the encoder and decoder respectively. Let us define ¢ as the time such
that F'Nepe (Z*) = F Ny, (Z), i.e. the time such that the same frame number is visible
on both sides. It holds that t* < Z. Let us then call At,. the time gap between two
grabbed frames on the encoder, which is constant since the grabbing frame rate is con-
stant; in such conditions a generic time ¢ can be approximated with ¢t = Atepe: F'Nepe ()
and exploiting the definition of latency as L (f) = — ", we can write it as follows:

tene - (FNene (1) = FNene (7))

tenc - (FNene () — FNgec (7)) (5.1)

This procedure needs to embed frame numbers directly on video frames and it could
be made automatic with a tool for recognizing the numbers on the images: using plain
numbers can be problematic due to the distortion introduced by strong image compres-
sion, which could make OCR task unreliable. For this reason, we prefer to adopt a
code-based number representation. The binary coded frame number is superimposed
on a small portion of each image. More specifically, blocks of white and black color were
used to code 1s and Os, respectively. Fig. shows some snapshots of the methodol-
ogy. The leftmost-upper two blocks are static and are used for calibration purposes. A
video streaming session gets started and the video is played on the screens of both sides
(encoder and decoder), which are physically placed one close by the other. At the same
time, an external high-frame-rate camera acquires and stores a video of the evolution

Figure 5.1: Examples of the experimental methodology used to measure latency. (a)
and (b) are two frames of the same video, respectively frame number 1702 and 1718.
During a streaming session (c) it happens that, due to latency, the encoder side is
showing frame (b) while the decoder the frame (a).
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of the streaming process on both screen (Fig. [5.1(c)). The resulting video is processed
with simple image processing algorithms to automatically compute F' Ny and F Nge.
by recognizing black and white blocks and deduct latency using Eq. This tool is
very flexible since it can measure the latency also on non open-source systems such as
Windows Media and Real Networks.

3) Frame loss: the following equation quantifies the lost frames LF (f) exploiting the
same frame number coding methodology: given

AFNdec(j) = FNdec(j) - FNdec(j - Atacq) (52)

where At is the discrete sampling period of the external camera and j is a generic
frame of its recorded video, then

t
LE (1) =Y () (5.3)
=0
where
y =10 if AFNgeo(j) < 1
o) = { AFNge.(j) —1 otherwise (5.4)

In other words, given that the encoding frame rate is constant and that the frame rate
of the external camera is much higher than the encoding and decoding frame rates, if
two successive frames grabbed with the external camera show the same frame number
or two successive frame numbers on the decoder screen, it means that no frames were
lost. Frame losses can be due to network datagram losses (this event would most
likely produce a loss of several consecutive frames, since a datagram usually contains
several frames when compression rates are high and frame size are limited), compression
skipping or decoder frame overwriting.

4) Video fluidity: it can be measured as the trend of the Atge., the time gap between two
frames played by the decoder. This information can be computed again exploiting the
frame number coding. In the best case, Atge. is constant and equal to Atey,.; conversely
the more the Aty is scattered, the more the video playback looses in fluidity.

5.2 Test Bed and Operational Conditions

The tests for video streaming assessment are designed to verify the degree of fulfillment
for the requirements listed in Tab. The results are discussed on the basis of two
different platforms: the former is PC-to-PC, the latter is PC-to-PDA.

For the PC-to-PC platform, we prepared a mobile-to-fixed system: the mobile site
was mounted on a car (camera-car setup) and equipped with a standard x86 laptop (Intel
Pentium Centrino 1.7Ghz), connected to either a USB Camera (Logitech Quickcam Pro
4000) or an IP camera (Axis 2420 plus infra-red illuminator for night vision), and an
EDGE-GPRS modem used for uplink video transmission.

For the PC-to-PDA platform, we tested a fixed-to-mobile scenario; some tests have
been performed also in a mobile-to-mobile scenario (from our camera-car setup to the
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PDA). Two different PDAs have been used for the tests (i-Mate JasJar, WM 5.0, CPU:
Intel Bulverde, 520Mhz; i-Mate PDA2k, WM 2003, CPU: Intel PXA263, 400Mhz); the
results did not show relevant differences by using different PDAs. In this case the radio
mobile connectivity was always GPRS-based.

In both hardware configurations, the following operational conditions were used:

e video encoding: the H.264 codec has been tested in two different profiles: a baseline
(to achieve low latency at the cost of low quality) and a high profile (for best
video quality at the cost of higher latency). The high profile contains several
enhancements including the use of CABAC [47] encoding, wider reference window
for B frames, deeper analysis for macro-block motion estimation, finer sub-pixel
motion estimation and better rate distortion algorithms;

e video sources: the design and development of the system was always tailored
for live video sources, but the performance measurements were gathered using
two stored videos (VLAB, VCAR) in order to replicate the experiments on the
same data. Tab. shows the main properties of the test videos. Specifically, the
video VLAB contains scenes with three different types of motion: reduced (moving
people but static camera), medium (freely moving camera) and extreme (shaking
camera); the video VCAR is taken from the camera-car setup while driving in a
busy urban area.

VLAB “VCAR

(=~ 1200 frames)

Scenario Indoor Outdoor
(webcam inside (camera-car in
laboratory) urban traffic)
Frame Rate 10 fps 10 fps
Resolution QVGA (PC-to-PC) QVGA (PC-to-PC)
QQVGA (PC-to-PDA) | QQVGA (PC-to-PDA)
Length ~ 120 s ~ 600 s

(~ 6000 frames)

Table 5.1: Recorded videos used for video streaming assessment.

e network and bitrates: when relying on EDGE-GPRS, video bitrate was set to
80 and 20 Kbps. A few tests were made saturating the effective EDGE-GPRS
bandwidth, at 120 Kbps. When using GPRS, video bitrate was set to 20 and 5
Kbps, and a few tests were made with 10 Kbps. As mentioned in the introduction,
20 Kbps on EDGE-GPRS and 5 Kbps on GPRS are meant to generate four si-
multaneous and independent (not spatially multiplexed) video streams. We have
experimented the wireless network transmission in several conditions: half tests
were performed with the encoder as mobile site, the other half being the decoder
side. Half the cases inside a building and in the other half on our camera-car
setup (we drove for more than 80 km, at urban and freeway speeds, between 50
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km/h and 110 km/h). We measured the network transmission on 20000 UDP
datagrams, for more than 140 minutes of video streaming over GPRS at 5 and
20 Kbps and over EDGE-GPRS at 80 Kbps. In these conditions, thanks to the
ARQ implemented in the RLC, a very reduced percentage of datagrams was lost
(0.54%) and none was received out of order. Given this high degree of reliability
of GPRS and EDGE-GPRS networks, in the next sections we will give evidence of
frame losses due to compression skipping and to decoder frame overwriting only,
which are definitely predominant on the effects due to network failures.

5.3 Experimental Results in PC-to-PC Scenario

Bit- Dec | Playback Avg Std
Tool Profile rate Dsp Frame Latency | Dev
(Kbps) | Cpl Rate (sec) (sec)
1 | MoOSES baseline 80 no fastest 1.26 0.28
2 | MOSES baseline 80 yes fastest 1.21 0.28
3 | MOSES baseline 80 yes adaptive 1.55 0.27
4 | MoOSEs high prof 80 yes fastest 1.65 0.38
5 | MOSES baseline 20 yes fastest 1.41 0.33
6 | Windows 80 4.76 0.36
Media
7 | Real 80 3.15 0.07
Media
8 | VLC baseline 80 2.21 0.27

Table 5.2: Latency of Windows Media, Real Media, VLC and MOSES in PC-to-PC
scenario over VLAB at QVGA resolution. DecDspCpl stands for Decoder-Display Cou-

pling.

Latency measures in PC-to-PC scenario are summarized in Tab. MOSES is
configured in five different ways and compared against Windows Media, Real Media
and VLC. The latency introduced by MOSES is the lowest, whatever configuration is
used. With respect to the base configuration (row #1 of Tab. , the introduction
of the decoder-display coupling, for frame-overwriting reduction, decreases the average
latency from 1.26 s to 1.21 s (row #2). Instead the use of the adaptive frame rate
control with 77, = 5%, Ty = 15%, W=0.005 and p = 0.04 (row #3) has the cost of a
slight increase in latency (1.55 s) but greatly improves the video fluidity, as described
further in this section. The introduction of a high complexity encoding profile (row #4)
adds about 0.45 s of latency, that is tolerable considering the gain obtained in image
quality. Finally, the reduction of the bitrate (from 80 to 20 Kbps) increases the latency
(row #5) because the time to fill the UDP datagrams (whose size is kept unchanged for
the sake of the test) is longer.

In order to produce a fair comparison, the other three systems have been configured
to minimize latency — smallest buffer size and fastest video codec and profiling. In
Windows Media, the streaming server (a middle layer) was removed and the video was
streamed directly from the encoder to the player. VLC H.264 was configured with
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the same baseline profile used in MOSES; since raw UDP streaming is not supported,
MPEG-TS/UDP/IP (the only one available on UDP) was used: under these conditions
the latency is fairly low (row #8), but this is obtained at the cost of a fully compromised
video quality, since about 48% of the video frames were corrupted or lost.

A possible side effect of reducing the latency is to lose video fluidity, having an
irregular trend of Atg... The graphs in Fig. |5.2(a)land |5.2(b)|show the buffer occupancy
and the Atge. respectively, with MOSES configured as in row #2 of Tab. the buffer
occupancy is always close to zero, resulting in an almost-ideal latency. However, this
set-up generates a frequent increase of the frame decoding time, from the expected
100 ms (due to a FRpaypack of 10 fps) up to 1.4 s. These continuous changes in the
Atge. bring to poor video fluidity, affecting both the overall user satisfaction and the
understanding of the scene for the human-based video surveillance.

Fig. |5.3(a)land|5.3(b)[show the improvements achieved by enabling MOSES’ adaptive
control in the condition of row #3 of Tab. The trend of the Atge. demonstrates
that the playback is made fluid. As described in Section [4.2] when the buffer occupancy
is lower than 77, (5% in this experiment), the control starts decreasing the decoding
frame rate until the buffer occupancy is stable between 17, and Ty. Conversely, when
the buffer occupancy is higher than T, the control increases the playback frame rate
to empty the buffer.

Fig. shows image quality and frame losses measurements over the VLAB at 80
Kbps. Image quality is evaluated in terms of PSNR and the lost frames are represented
with superimposed symbols at the bottom of the same graph. MOSES was configured
with high encoding profile (row #4 of Tab. . VLC could not work properly with the
same high profile due to a massive video frame corruption, therefore it was configured
with a slightly lighter profile. Windows Media and Real Media were configured with
WMV9 and RMV10 codecs respectively. Tab. summarizes the achieved results: the
statistics over the PSNR are computed on the correctly received frames only. It is clear
that MOSES outperforms the others, showing also very few (and fairly distributed) lost
frames.

PSNR in dB % of

avg. (std. dev.) | lost frames
Windows Media 34.79 (2.61) 2.09%
Real Media 35.32 (2.66) 9.38%
VLC 32.76 (3.04) 73.96%
MOSES 38.23 (2.16) 4.00%

Table 5.3: PSNR and percentage of lost frames in the PC-to-PC scenario over VLAB
at QVGA and 80 Kbps.

Eventually image quality on MOSEs at different bitrates is measured. We used the
VCAR video, encoded with baseline profile at 20 (resized at QQVGA resolution), 80 and
120 Kbps. Results are shown in Fig. [5.5] The difference in the PSNR along the time is
mainly due to the different scenes in the video (moving or stationary car) which change
the global image motion therefore varying the compression quality. It is interesting to
notice how the image quality increases significantly (becoming higher than 35 dB even
in the 20 Kbps video stream) when the camera is not moving, being when the car has
stopped at the traffic light (approximately from frame 1700 to 2000).
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5.4 Experimental Results in PC-to-PDA Scenario

Bit- Dec | Playback Avg Std
Tool Profile rate Dsp Frame Latency | Dev
(Kbps) | Cpl Rate (sec) (sec)
1 | MoOSESs baseline 20 no fastest 1.25 0.28
2 | MOSES baseline 20 yes fastest 1.16 0.30
3 | MOSES baseline 20 yes adaptive 1.76 0.39
4 | MOSEs high prof 20 yes fastest 1.68 0.58
5 | MoOSES baseline 10 yes fastest 2.29 0.47
6 | MOSES
m-to-m baseline 20 yes fastest 2.96 0.49
7 | Windows 20 6.42 0.14
Media
8 | Real 20 3.87 0.10
Media

Table 5.4: Latency of Windows Media, Real Media and MOSES in PC-to-PDA scenario
over VLAB at QQVGA resolution. M-to-m stands for mobile to mobile.

Tab. and Fig. show the latency measurements in the PC-to-PDA scenario
on the VLAB video; VLC is excluded because its PDA player is not actually available.
Fig. shows the comparison between Windows Media PDA player and Real Media
PDA player according to row #7/8 of Table Both these systems show an almost-
constant, rather-high latency. Moreover, Windows Media shows latency scattering from
second 60 to second 90, corresponding to the part of the video sequence when the camera
is shaking; also the lost frames are concentrated in this part of the video.

Fig. plots the latency of MOSES, encoding video in the three conditions of row
#1/2/3 of Tab. The orange plot (Tab. row #1) shows the latency when the
decoder and display threads are running decoupled. This generates a massive presence
(79%) of frame losses, due to overwriting. The plot shows sharp and regular peaks
due to buffer underflows (sharp latency raises) and very fast playback (sharp latency
falls). The introduction of the decoder-display coupling avoids frame overwriting and
the frame losses are reduced to 2%: this is the blue plot (Tab. row #2), that shows
smaller peaks as expected; however there is a higher dependency of the latency on video
sequence complexity: for example, the latency suddenly drops around second 28, when
the camera starts to move. This is due to the tolerance of the bitrate control: the more
complex the scene is, the higher the encoding bitrate and the lower the time to fill up and
deliver a datagram. The opposite effect is visible around second 96, when the camera
stops moving. As in the PC-to-PC case, also in this configuration the introduction of
the decoder-display coupling yields a lower latency than with the coupling disabled. The
green plot (Tab. row #3) shows the latency when the adaptive control is turned on:
since the buffer is initially empty, it reduces F'Rpjqypack of a factor € = 1.002 each frame;
after a few seconds (approximately 15), F'Ryjqypack has reached a critical value and the
latency starts to increase until the buffer occupancy becomes definitely greater than
zero: at this point, the reaction of the adaptive control becomes effective and reduces
the latency through the increase of F'Rpjqypack of €2 each frame. The adaptive control
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drastically reduces the presence of peaks in the latency. Fig. shows the frame
number trend of the streams of Fig. |5.6(b)| in a short time interval. The plot clearly
shows the smoothness in the playback introduced by the adaptive control.

Eventually, Fig. shows the latency measured for MOSES in the three condi-
tions of row #2/4/5 of Tab. As expected, the high profile increases the latency.
Also the 10 Kbps stream latency is higher: as aforementioned, it is because the reduction
of encoding bitrate increases the time to fill the UDP datagram.

We also measured latency in a mobile-to-mobile setup, row #6 (specifically laptop
to PDA) setup: the plot of the latency is similar to the other cases, but the average and
the standard deviation tend to increase. In fact this configuration introduces a further
degree of instability in the network communication, due to the additional step of the
video data flow on radio mobile channels.

PSNR in dB. Avg. (std. dev.)
20 Kbps ‘ 10 Kbps ‘ 5 Kbps
Windows Media 98.52 (2.14) | 27.02 (0.97) | 27.81 (1.01)
Real Media 30.30 (2.80) | 28.59 (2.24) | 27.36 (1.78)
MOSES 32.80 (2.77) | 28.93 (3.28) | 24.47 (3.01)
MosEs, forced @3.3 fps n/a n/a 29.76 (3.28)

Table 5.5: PSNR in the PC-to-PDA scenario over VLAB at QQVGA resolution.

% of lost frames
20 Kbps | 10 Kbps | 5 Kbps
Windows Media 17.27% 56.73% 96.11%
Real Media 8.93% 30.04% 60.01%
MosEs 0.32% 0.64% 15.86%
MosEs, forced @3.3 fps n/a n/a 67.48%

Table 5.6: Percentage of lost frames in the PC-to-PDA scenario over VLAB at QQVGA
resolution.

Eventually we calculated the PSNR of the compressed frames and the frame losses
of the VLAB on the three systems. MOSES was configured in high profile (row #4 in
Tab. . Fig. shows the results at 20 Kbps, 10 Kbps and 5 Kbps. The stronger
the compression becomes, the higher the frame loss rate is. It is evident that MOSES
outperforms, on average, the other two, especially in terms of lost frames. Tab.
reports a summary of the average PSNR and Tab. the percentage of lost frames.
MOSES could sustain 10 fps even at 5 Kbps, but, as expectable, the frame rate is
maintained only at the cost of PSNR. Forcing our encoder to skip 2 frames on 3, PSNR
increases significantly (Fig. [5.7): the percentage of lost frames is 67.48% (consider
that 66.6% was due to the forced frame skipping at the encoder side), but the average
PSNR is 29.76 dB. However, as stated in Section this is not a suitable solution for
the computer-based video surveillance due to an excessive frame skipping that prevents
correct tracking.
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5.5 Measuring Compression Only: Speed and Quality

We performed a further set of tests to assess the performance of the compressor MOVIE.
In the specific we are interested in excluding the streaming and decoding parts and
measuring only compression parameters, namely speed and frame-by-frame quality, as-
suming to use bandwidths that may be supported by UMTS or HSPA networks; to this
aim we propose the following benchmarks:

e video benchmark: three minutes long video clip, taken from the movie “Terminator
3” from minute 3 to minute 6 in PAL resolution (720x576). The original video
is compressed with MPEG2 codec (DVD compression); the proposed video clip
qualifies as a challenging benchmark for video compressors since it is (obviously)
taken with moving camera, contains high degree of motion and several sudden
changes of visual scenarios;

e cncoder benchmark: the video encoder is fed with the video benchmark at two
different resolution (720x576, 30 fps and 360x288, 25 fps) and is requested to
target the bandwidths from 100 Kbps to 1 Mbps, with 100 Kbps stride;

e computer benchmark: a desktop PC with Windows XP. The hardware configura-
tion is: AMD Athlon 64 X2 Dual-Core, 2.00 Ghz, equipped with 2GB of RAM.

The tests measure: (a) the time needed to compress the whole video; (b) the PSNR
computed comparing the compressed frames with their original version (that is MPEG2
compressed) and then averaging the resulting PSNRs over the whole video clip. Actu-
ally, the time measurements include also the decoding from the original MPEG2 clip
and the storage of the compressed stream in the file system. It is straightforward that
if the encoding time is less than three minutes, the task can be performed in real-time
on the given computer benchmark.

The first test measures speed and PSNR of MOVIE configured with two different
profiles of the H.264 encoder (quoted also in Section :

1. baseline profile: H.264 is configured to minimize the CPU load at the cost of
low video quality compression. It uses fast motion estimation, no B frames, wide
key-frames interval; CABAC and deblocking filters are disabled;

2. high profile: opposite of baseline, i.e. highest video quality compression at the cost
of higher CPU burden. It uses exhaustive motion estimation, P and B frames,
limited key-frames interval, CABAC and de-blocking filters.

. The results reported in Tab. show that the high profile yields to slightly better
PSNR at a much higher computational load; consider that the compression in this set
of tests has been forced to work on one CPU core only.

The second test, reported in Tab. compares the performance of MOVIE ver-
sus the commercial encoding software MainConcept Referenceﬂ both applications have
been configured to work with baseline profile and the limitation to one CPU core has
be removed: indeed the compression time in MOVIE is approximately halved (w.r.t.
the times reported in Tab. column “Baseline Profile”), demonstrating the effi-
ciency of the multi-threaded implementation described in Section At full resolution

"URL: www.mainconcept.com
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Baseline Prof. High Prof.
Video Clip Bit- Enc. Enc.

Properties Rate Time | PSNR | Time | PSNR
100Kbps || 4.38 31.59 12:17 | 32.48

200Kbps || 4.52 34.11 14:58 35.10

300Kbps || 4.59 35.40 17:02 36.35

400Kbps || 5.10 36.14 18:40 36.62

500Kbps || 5.18 36.67 19:57 | 37.54

;(2)0;;5876 600Kbps || 5.26 37.07 21:03 37.88
700Kbps || 5.38 37.39 22:04 | 38.14

800Kbps || 5.51 37.62 23:02 38.35

900Kbps || 6.01 37.83 23:56 38.52

1Mbps 6.12 38.01 24:38 38.67

100Kbps || 2.18 34.01 5:33 35.00

200Kbps || 2.21 35.65 6:35 36.55

300Kbps || 2.26 36.47 7:26 37.24

400Kbps || 2.30 36.97 8:05 37.67

500Kbps || 2.33 37.33 8:45 37.97

ggo;;i% 600Kbps || 2.37 37.60 9:19 38.18
700Kbps || 2.43 37.82 9:53 38.35

800Kbps || 2.49 38.00 10:22 38.48

900Kbps || 2.54 38.13 10:51 38.58

1Mbps 2.58 38.25 11:25 38.67

Table 5.7: Encoding performance of benchmark video with MOVIE. The compression is
forced to compute on one CPU core only.

MainConcept yields slightly better results both in speed and video quality, but at half
resolution the performance are reversed, showing a better video quality and a significant
lower time in favor of MOVIE. Regardless of these minor differences, these tests demon-
strate that even at higher bitrates and frame sizes w.r.t. the tests in the former sections,
MoVIE provides state of the art performances, comparable to commercial softwares.
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MOVIE MainConcept
Video Clip Bit- Enc. Enc.
Properties Rate Time | PSNR | Time | PSNR

100Kbps || 2:46 31.59 2:41 31.64
200Kbps || 2:47 34.11 2:42 34.80
300Kbps || 2:53 35.40 2:46 36.23
400Kbps || 3:04 36.14 2:50 37.10
500Kbps || 3:09 36.67 2:55 37.72

;(2)0;;)276 600Kbps || 3:18 37.07 3:00 38.16

700Kbps || 3:21 37.39 3:04 38.53

800Kbps || 3:23 37.62 3:09 38.83

900Kbps || 3:30 37.83 3:14 39.08

1Mbps 3:33 38.01 3:17 39.29

100Kbps || 1:26 34.01 1:45 32.96

200Kbps || 1:26 35.65 1:49 34.41

300Kbps || 1:27 36.47 1:53 35.00

400Kbps || 1:27 36.97 1:56 35.34

500Kbps || 1:28 37.33 1:58 35.56

300x288 600Kbps || 1:29 37.60 2:00 35.72
25 fps

700Kbps || 1:29 37.82 2:01 35.84
800Kbps || 1:31 38.00 2:02 35.93
900Kbps || 1:32 38.13 2:03 36.00

1Mbps 1:32 38.25 2:07 36.06

Table 5.8: Encoding performance of benchmark video of MovIE and MainConcept, con-
figured with baseline profile. In this test the multi-threaded optimizations are enabled.
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Figure 5.6: Comparison in terms of latency over VLAB at QQVGA resolution. The
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Chapter

Introduction

In recent years, object detection and tracking have been recognized by the scientific
community as fundamental tasks since they are founding blocks for most of the advanced
video analysis steps. To be more specific, detection and tracking are complementary to
each other, and depending on the properties of the video to process, one of the two is
typically preliminary to the other: in other words, tracking by detection or detection
by tracking [28].

In this thesis part we deal with the issues that arise when object tracking and de-
tection are performed within the context of mobile video surveillance. As we mentioned
in Section 2.2} there are two orthogonal contributions that must be considered in this
case, namely mobility and distribution of the system modules.

Considering the several modules of surveillance systems and the large number of
possible combinations mixing those two features, a very wide range of different tracking
scenarios can be generated: for instance, tracking performed on embedded systems or
on smart cameras, tracking on compressed videos, consistent labeling (multi-camera
tracking) with synchronized or non-synchronized video streams, tracking from non-
steady cameras, and so forth. Each of these tracking scenarios raise very challenging
problems to be solved. We propose to tackle two specific types of tracking that lie on
the extremes of the axes of Fig. i.e. a tracking scenario with high degree of system
distribution and another with high degree of system mobility.

Regarding the tracking scenario with high degree of system distribution, in Chapter
we envision a scenario with mobile source modules (i.e. the position of the cameras
is unconstrained, but they operate remaining static), equipped with the bare minimum
computational support to perform video grabbing, compression and streaming. All
the steps to obtain object tracking are performed remotely. This is a typical scenario
were the area to survey is subjected to frequent transformations or translations and
unspecialized smart cameras are deployed. Object tracking on fixed camera videos
has been thoroughly analyzed in scientific literature [11], and it could be considered a
solved problem when performed in standard conditions. However, issues arise when the
parameters of the system or the properties of the observed scene take extreme values.
We are interested here in the evaluation of tracking performance when the video data
is passed through an extreme compression and streaming process.

Publications related to Part \ﬂ@g ; see the list of author’s publications, page
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In the case of IP-based cameras exploiting large-bandwidth networks, the problems
introduced by the network are typically negligible and remote video analysis might be
similar to local processing. However, this task becomes definitely more challenging when
the camera is connected to the network through wireless low-capacity means, since a
severe spatial and temporal compression of the video stream is unavoidable; this could
compromise the automatic surveillance task that follows.

In the case of cameras that operate being fixed, the paradigm of tracking-by-
detection is commonly adopted and the detection (called also segmentation) is often
based on background suppression techniques which compare the actual pixel values
with the corresponding values in the (statistically) learned model of the static scene. It
is evident that the frame compression can significantly affect this step by changing pixel
values and making a sophisticated statistical background model useless. For this reason,
in Chapters [7] and [0 we define a system and a method to measure the performance of
pixel-level moving object segmentation operated on videos that have been previously
compressed and streamed over low-bandwidth networks. The tracking step is also sen-
sitive to frame skipping and to excessively-low frame rates since it is typically based
on object-to-track association (on a frame basis) and on limited search areas: thus, if
an object moves too much on two successive frames, tracking is likely to lose it. For
this reason, we also evaluate the ability of the system to track objects after a strong
temporal degradation due to video transmission.

Regarding the tracking scenario with high degree of system mobility, in Chapter
we envision a scenario with moving source modules: more specifically, we tackle object
tracking from cameras that are freely moving and changing the focal length. Differently
from the previous scenario, it is not possible here to exploit statistical or geometrical
models to segment the foreground objects from the background and predictive models
(such as Kalman filters) are ineffective. In such cases, many scientific contribution
propose the detection-by-tracking approach.

In point tracking, objects are usually represented by single or multiple points and the
correspondences between two consecutive frames is established by either deterministic
[66] or statistical methods [67] to provide tracking without object segmentation. An
alternative is to represent the data using kernel primitives such as rectangles or ellipses.
These kernel methods can be used to estimate a density-based appearance model of
the object [68]. Other approaches encompass silhouette tracking, estimating the object
contour evolution by means of state-space models [69] or variational methods |70].

These proposals are robust and efficient when the object can be represented by
a single feature (e.g. color, texture, covariance descriptors, etc.) but in the case of
complex articulated objects represented by parts which are often partially or completely
overlapped they are likely to fail. To deal with such challenging scenarios structural
information expressing spatial constraint among features might be used. This is the
case of the pictorial structures [71] that have been proposed for object recognition
and then further developed for people tracking [35]. Similarly |72,|73] are based on
inference in a graphical model and can be applied again to people tracking [74]. All
these approaches tend to be specifically focused on the articulated structure of the
human body or human face and rely on Bayesian probabilistic frameworks; on the other
hand tracking can be brought to a problem of graph matching through a graph based
representation using Region Adjacency Graph (RAG), where vertices represent image
regions and edges encode adjacency. This is the case of |[75-78]. A notable exception
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is [79] where RAGs are tracked by fitting independent Kalman filters to both regions
and adjacency relations. [80] uses graphs and Kalman filter for insects tracking.

Structural methods based on point features are less used than region-based ones.
This is primarily due to the fact that defining relations between point features is more
difficult. In [81] SIFT features are extracted from the tracked object and a nearest-
neighbor graph is built on top of them. Relaxation labeling is used for matching and
the object graph itself is updated by removing disappearing features and adding new
ones. In [82] the tracked features are the linear borders of geometric objects and edges
connect parallel or perpendicular borders.

The definition of the structural model can be inferred from the image data. This
approach is very general but might suffer from the instability of the model inference, in
terms of detection of both regions and features and with respect to the invariance of the
relational structure to be tracked. In addition, an inferred model is inherently unable to
capture detailed information about the intrinsic articulation and deformability of non-
rigid objects. This lack of use of previous knowledge in tracking is indeed surprising
as structural models, such as spring models [83,84], are widely used to describe the
behaviour of articulated objects.

By contrast, in Chapter [8] our proposed approach requires a prior structural model
of a target object with generic shape (i.e. not necessarily bound to the human body
figure or human face); this model is then enriched with features (or attributes) extracted
from real data. In this way we are able to search for a match that not only maximizes
the frame-by-frame feature matching, but that also accounts for the coherence of the
structural relations in a way invariant to variations in scale, rotations and translations,
and even blurring due to camera motions; the search for the best coherent match with
the provided model is made through Dominant Set extraction [85].
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Chapter

Tracking on Low Bandwidth Video
Streaming from Steady Camera

The system used for evaluating the performance of object tracking with mobile source
module and remote video analysis, is made of two main parts: MOSES, described in
Chapter |4}, provides video grabbing, compression, up-streaming, down-streaming and
decompression; SAKBOT (Statistical And Knowledge-Based Object Tracker), described
in the following section and in [9], performs moving object detection and tracking. In
the specific, MOVIE grabs the video, encodes and streams it over radio-mobile networks;
MovVIDE down-streams and decodes the stream and passes the video frames to SAKBOT.
The inter-process communication between MOVIDE and SAKBOT is provided with Mem-
ory Mapped Files (MMF; see Appendix B for details): the two applications exchange
raw uncompressed data, in order to keep the quality of the decoded video frames un-
changed. Fig. depicts the architecture used to assess the performance of the tracking
performed with SAKBOT on low bandwidth video streaming w.r.t. the performance of
the same system working on full quality videos; further details are provided in Chapter

[l

TEST BED
VIDEO
MOVIE MOVIDE
video grabbing video decoding

and forwarding

|
|
|
|
:
|
REPOSITORY :
:
: and encoding
|
|

SAKBOT comparative SAKBOT
motion segmentation ) assessment ( motion segmentation
and object tracking of tracking and object tracking

Figure 7.1: Functional scheme of the architecture used to assess tracking on low band-
width video streaming from steady camera.
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7.1 A System for Segmentation and Tracking with Fixed
Background

The functional scheme of SAKBOT is depicted in Fig. called I! the current image
and I*(p) the value of a point p in the RGB color space, SAKBOT compares the input
image with the background model B, defined for each point of the image. If p is a
point on the uncovered background then Bt(p) should correspond to its value in the
current frame; however, if p is a point of a known object (i.e. that has been segmented
and classified), Bt(p) is an estimation of the value of background covered by the object
itself. Thus, if point p does not belong to any known object, the background value
in p is predicted using only statistical information (B{FA%(p)) on the set of elements
S(p) = {It(p),It=At(p), ..., I* 22 (p)} U w, {B*(p)}. In order to improve the stability
of the model we include an adaptive factor by combining the n sampled frame values
and the background past values (with an adequate weight w;). The n frames are sub-
sampled from the original sequence at a rate of one every At (typically one every ten).
Then, the statistical background model Bg is computed by using the median function
as follows:

k
B2 (p) = arg mmz Distance(x4,%x3)  xi,%X5 € S(p) (7.1)

=1k

where the distance is a L-inf distance in the RGB color space:
Distance(xi, x;) = max(|z;.c — xj.c]) with ¢ = R,G, B. (7.2)

Foreground points resulting from the background suppression could be used for the
selective background update also for the ghost (i.e. apparent object) suppression. When
a stopped object starts to move two foreground objects, one real and one apparent
(the ghost) are generated and the background must be selectively modified. Thus,
foreground points are segmented into known objects whose motion and texture features
are evaluated to classify them in moving visual objects (MVO), noise, shadows or ghosts.
Shadows are detected as proposed in [86]. Accordingly, a knowledge-based background
model By is defined as:

Bi(p)  ifpe {00 is MVO}
t+AL Y\ p p
B, (p) = { BtHAt(p) if p € {O]O is ghost} (7.3)

The knowledge of the scene’s components in the current frame will be used to update
the background model B:

BttAt(p) if p ¢ known object
t+At _ s p p J
B _{ BYFAY(p)  otherwise (7.4)

The expression in Eq. defines a selective background update, in the sense that a
different background model is selected whether the point belongs to a known object or
not.

Moving objects detected by SAKBOT are then classified as person or non-person
according to their geometrical shape and size (scaled according to their position on
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Figure 7.2: Functional scheme of SAKBOT

the ground plane, if calibration data are available). The objects validated as people are
then tracked by means of an appearance-based algorithm. The algorithm uses a classical
predict-update approach. It takes into account not only the status vector containing
position and speed, but also the memory appearance model and the probabilistic mask
of the shape [87]. The former is the adaptive update of each pixel in the color space. The
latter is a mask whose values can be viewed as the probability for that pixel to belong
to that object. These models are used to define a maximum a posteriori classifier
that searches the most probable position of each person in the scene. The tracking
algorithm includes a specific module for coping with large and long-lasting occlusions.
Occlusions are classified into three categories: self-occlusions (or apparent occlusions),
object occlusions, and people occlusions. Occlusion handling is very robust since it can
maintain the shape of the tracked objects in a very precise manner. It has been tested
in many applications and further details can be found in [87].

The approach used in SAKBOT is quite robust and has been applied in several differ-
ent outdoor/indoor contexts, but requires both an almost-fixed time interval between
successive frames (the above-defined At) and a good image quality to have correct pixel
values for the background updating.
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Chapter

Tracking with Freely Moving Camera

The approach proposed here tackles object tracking in the challenging condition of
freely moving camera and varying focal length. For the sake of performance evaluation,
the experimental results are generated using recorded videos, but nothing hinders to
deploy the proposed algorithm on a mobile video surveillance system with moving source
module. The system could be either monolithic or distributed. However, in the second
case, the network bandwidth to rely on for video streaming must be definitely higher
than what has been discussed in Chapter [7}, where only videos with fixed background
were taken in consideration. Indeed, a video footage having equal frame rate and frame
size of what was proposed there but grabbed with freely moving camera, would require
higher compression bit rates to maintain similar video quality. The test performed in
Section demonstrate that MOSES can provide the desired video quality even in this
challenging scenario.

8.1 Overview of the Framework

Fig. shows the conceptual scheme of our framework. An initial Graph-Based Model
Definition provides the framework with both a model of the features to be tracked and
a structural representation of their spatial arrangement. In this proposal color features
are used, but different or more descriptive features could be exploited (textures, edges,
covariance descriptors, etc.). Moreover, an initial frame can be taken as reference for
the extraction of the feature model, the structural model or both (Fig. [8.2(a)). Each
new frame I; (Fig. [8.2(b)) is provided to the Feature Cluster Extraction component
(Section that applies the feature model and produces the mask of the probability of
each feature class onto the current image (called back-projection). Each back-projection
is then clustered using meanshift and, for each cluster, attributes are extracted. Most
of the extracted feature clusters represent erroneous detections of the tracked object
feature (see Fig. [8.2] (c-g)) and the correct candidates must be extracted using global
consistency information, using the procedure that follows.

A labeling function maps each feature cluster on the originating model feature. Each
pair of clusters, whose features are rigidly joined together in the structural model, are
connected by edges to form the labeled graph G (Section. Then an edge weighted
association graph G A; is created between the structural model Gy and the labeled graph
Gy (Section and each edge is weighted according to a global coherence measure
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(Section [8.3.4) in such a way that each maximal edge weight clique in GA; corresponds
to a maximal coherence subgraph isomorphism of Gy on G¢, and vice versa. Finally
the Dominant Set framework [85] is used to search for the maximum coherence match

(Section [8.3.3) Match; (Fig. [8.2(h)).

{GRAPH-BASED MODEL ASSOCIATION GRAPH CREATION ] iDOMINANT SET AND MATCH !
iDEFINITION v i iEXTRACTION ]
| |
L | | - Subgraph |
Feature Structural ‘ Association GA‘ Coherence 1 GAU Dominant Set . i
Model Model ”| Graph Creation Computation | | Extraction Isomorp_hnsm ]

GO Induction | Matcht

Labelled Graph
Creation
4

Match, ,

r
C, \ﬁ A

i
| Observation- | BP. g i
t »  To-Model LR Clustering E‘—» CAr;trlb'rUttlian ]
Matching CHIBLECEO : M
_ Match,,
|

{FEATURE CLUSTER EXTRACTION *

Figure 8.1: Scheme of the proposed framework.

Figure 8.2: Framework steps by examples. (a) definition of structural model (red) and
color-feature model (green); (b) generic input image; (c) backprojection of color-feature
of the head on input image and clusters extraction. Each cluster is represented by an
ellipse. (d-g) same as (c), for the following body parts: (d) for torso, (e) for legs, (f) for
left arm, (g) for right arm; (h) result of tracking as a maximal subgraph isomorphism
of the model (a) onto current image (b).

8.2 Extraction of Feature Clusters

For each feature of the model, the Feature Cluster Extraction component extracts all the
possible clusters of features which might represent a part of the tracked object according
to the feature model. The Feature Cluster Extraction operates on simple color features
using a modification of the Camshift algorithm [88], but different cluster extraction
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algorithms could be used.

The standard Camshift tracking algorithm uses a model of the object, consisting of a
color histogram, and requires a region of interest to initialize the search. For each input
image a probability mask of the model is produced, evaluating each pixel according
to the color histogram as if it were a pdf. The resulting value is then scaled on 256
gray levels, producing the so called back-projection. Then, iteratively alternating the
meanshift gradient ascend algorithm and a size-adaptation of the region of interest,
the region estimate converges to encompass the extracted features, providing the initial
search location for the next frame.

For the extraction of the feature clusters, the Camshift is modified as follows. First,
the object to be tracked is modeled with multiple histograms of colors, each correspond-
ing to a different part (e.g. green boxes in Fig. [8.2(a))); therefore, for each input image,
multiple back-projections (BP;) are obtained (Figs. (c-g)) and the cluster extraction
proceeds independently for each BP;. Second, the back-projections are obtained on the
following quantization of the Hue-Saturation-Value color space:

UL me) 55 aV sy
(h,s,v) = { 0,0, LIKG ) otherwise. ®.1)

The addition of value and saturation components to the standard Camshift color space
(that uses hue only) provides an enriched color description and allows to perform better
with low-saturation colors (considering the V component only). Third, our approach
scatters particles over the back-projections coming from each object part: each particle
determines a different starting point for a Camshift procedure, and consequently several
clusters are generated. The particles are spatially scattered over the BP; with Gaussian
or uniform distribution, depending on the object tracking status at the previous frame.
For each cluster C} of the set Cy, the set of attributes:

Ai= [P(C). M (CY) R (C}) . D (C)] (5.2

are computed, where P = (x,y) are the coordinates of the cluster centroid, M its mass,
R the area and D the density:

M (Cj)=>_ BP(p)

R(e)=[peci 83)
D= ey

8.3 Tracking using relational information

Regardless of the robustness of the extraction step several factors could lead to a wrong
assignment between clusters if plain part-to-part feature matching is used. Indeed,
distractors, noise, pose deformations or illumination changes can easily lower the co-
herence between correct correspondences or make unrelated features more similar. For
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this reason any approach that is based only on the similarity between features is in-
herently sensitive to noise and clutter. To overcome this limitation we add contextual
information, thus casting the feature matching into a more robust subgraph matching
problem.

8.3.1 From feature clusters to labeled graphs

In order to obtain a graph from a set of feature clusters we exploit the prior knowledge
about the physical structure of the object. To this end, we define a structural model
where each part of the object is associated to a feature class which is known to be rigidly
joined to some other parts, but can move freely from the rest. This is the case with any
articulated object, while totally-rigid objects can be modeled by joining all the parts.

A structural model of an object is a connected graph G,, = (P, S) where P is the
set of distinct parts we use to represent the object, with cardinality |P|, and S C P x P
are their structural relations, where (pg,py) € S if and only if p, and py are joined in
the object. This model embeds our prior knowledge about the structure of the object
to be tracked in terms of its parts. In Fig. some examples of structural models are
presented.

Figure 8.3: Example of objects and their structural models; the labels of the nodes are
used to define the labeled graph from the structural model by means of the labeling
function. For each object we depict a model transformation: (a) deformation, (b)
deformation, scaling and occlusion; in (¢) the model comprises two totally-rigid sub-
models one of which partially occludes the other.

Given
e a structural model G, = (P, 5),
e a set of features clusters C,
e the set of corresponding attributes A,
e a surjective labeling function [ : C — P, that assign one label to each cluster,

we define the labeled graph as the |P|-partite graph G = (C, E, A,l) where C is the
vertex set, E = {(u,v) € C x C|[l(u),l(v)] € S} the edge set, A the vertex attributes
and [ the vertex labelling function. In this graph each edge represents a structural
relation between a pair of feature clusters. The automatic extraction of feature cluster
candidates from a frame 7T} yields a graph with many nodes and edges. The supervised
selection of the ground truth from a reference frame will result in a simpler graph with
just one cluster for each part of the object to be tracked: we call this graph the model
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graph. Our goal is to find within each labeled graph extracted from a frame T; the
subgraph which is the most coherent with the model graph we are tracking. In other
words we are looking for a maximum coherence subgraph isomorphism.

Given labeled graphs Gl == (Cl,El,Al,ll) and G2 == (CQ,EQ,AQ,ZQ) a labeled iso-
morphism between them is a relation M C Cy x Cy such that V(uq,us2), (v1,v2) € M,
with w1, v, € C1 and ug,vo € Oy, the following properties hold:

ll(ul) = lg(Ug) AN ll(Ul) = lg(vg) (84)
and
U1l = V1 < U2 = V2 (8.5)

The first condition ensures that M does not map feature cluster of incompatible classes.
The second condition forces M to be a partial injective function. It is easy to see that
any labeled isomorphism is a special case of subgraph isomorphism which enforces label
consistency.

We still need to define a measure of the global coherence of a labeled isomorphism M.
In our context limiting the measure to a similarity between vertex attributes would be
not enough, as in this way we would be unable to take into account structural relations
among vertices. For example, considering vertices only it would be possible to measure
the color similarity of a cluster (i.e. an attribute of a vertex of a labeled graph) with
another cluster (from the other labeled graph); conversely it would not be possible to
measure the consistency of the inter-cluster distances from one labeled graph to the
other, since the concept of distance between clusters can be defined considering at least
pairs of them (i.e. edges of a labeled graph) and not just singletons. Unfortunately,
even measuring coherence between edges would not be general enough, as it would
not be possible to account for invariants that depend on more than one edge, such as
length ratios or angle differences: indeed, both these measurements can be obtained
considering at least pairs of edges. For this reason we defined a coherence measure
between pairs of edge matches as this allows us to deal with most of the variations in
scale and articulation throughout the whole video sequence. To this end we define the
set of edge matches as:

G(M) = {[(ul,vl) , (UQ,UQ)} S E1 X E2|(U1,U2) e MA (Ul,vg) € M} (8.6)

and let w : (F1 X Ey) x (B} x F3) — RT be a measure of coherence between pairs of
edges matches, then the total weight of M is defined as:

QM) = > > wlab). (8.7)

a€e(M) bee(M)\{a}

8.3.2 From graph matching to clique search

In order to search for a match of maximum compatibility between two labeled graphs
we choose a two-step approach which first casts the matching problem into a clique
search problem and then solves it using continuous optimization.

Given labeled graphs G = (C1, E1, A1,11) and G = (Cy, Ea, Ag,l2) and a function
w: (Ey X E2) x (E1 X F3) — RT that measures the coherence between pairs of edge
associations, we define an association graph between them as an edge weighted graph
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Ga = (Va, Ea,w) where Va = E; X Ey, Fa C Va x Va and, Yui,vi,wi, 21 € C; and
Yug, v, wa, 29 € Co, the element:

{{(u1,01), (ug, v2)], [(w1, 21) , (w2, 22)]}
belongs to Fa if and only if the following three conditions hold:

ll(ul) = ZQ(UQ) VAN ll(vl) = lg(vg) VAN ll(wl) = lg(wg) AN ll(zl) = ZQ(ZQ),
U = W1 <= Uz = wa, (88)

V] = 21 <= UV = 29

Figure 8.4: (a) two labeled graphs and a labeled isomorphism represented by the blue
dotted connections; (b) association graph between the former labeled graphs; its edges
are weighted by the coherence measure w; the subgraph highlighted by blue edges is the
clique associated to the labeled isomorphism shown in (a).

With this definition we are able to show some useful connections between labeled
isomorphisms and complete subgraphs (cliques) in this association graph.

To this end, note that each X C V, represents a relation between edges in F7 and
Es. In order to obtain a relation between vertices in V7 and V5 we define a natural map
v:P(Vy) = P(Vi x Va) as:

v(X) ={(u1,u2) € V1 x V3
[(u1,v1), (uz,v2)] € XV (8.9)
[(v1,u1), (v2, u)] € X}

That is, a match between vertices is induced by X if they are mapped by any edge
match in X. It is easy to see that v is not injective, nevertheless it has a proper right
partial inverse, namely the function e(M) defined by (8.6).

We can now formulate the following lemmas (proofs are provided in Appendix :

Lemma 1 Given labeled graphs G1, Go and their association graph G,, X C V, is a
clique if and only if v(X) is a labeled isomorphism between G1 and Gs.

Lemma 2 If X C V, is a mazimal clique in G4, then v(X) is a maximal labeled
isomorphism between G1 and Go. Conversely, if M is a mazimal labeled isomorphism
between G1 and Gy then e(M) is a mazimal clique in G,.
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From the previous lemmas and the definition of the weight of the labeled isomor-
phism M, derives the following:

Theorem 1 Given two feature graphs Gy and G, each mazimal(mazimum) weight
labeled isomorphism M between them induces a mazimal(mazimum) edge weight clique
in Ga(G1,G2) and vice versa.

The examples of a labeled isomorphism an the correspondent clique in a labeled
association graph are shown respectively in Fig. [8.4(a){and [8.4(b)|

8.3.3 An effective heuristic for the weighted clique problem

Theorem [1] casts our tracking problem into a search for a maximal edge weighted clique
in a novel type of association graph. In order to perform this search we use the Dominant
Set framework [85]. Given an edge weighted graph G = (V, E,w), a subset of vertices
S C V and two vertices i € S and j ¢ S the following function measures the coherence
between nodes j and i, with respect to the average coherence between node i and its
neighbors in S

63(i,) = w(if) — o (k) (5.10)

While overall weighted coherence between ¢ and all the nodes in S is defined as:

[ if |5 = 1
ws(i) = . ‘ . (8.11)
2 jes\ii s\(iy (6 J)ws\ (i3 (J)  otherwise

Intuitively, wg(i) will be high if 4 is highly coherent with vertices in S. Given this
measure S C V is said to be dominant if the following conditions hold:

wg (i) > 0,Vi € S and

8.12
wSU{i}(i) < 0,Vi §7_f S ( )

The conditions above correspond to the two main properties of a cluster: namely in-
ternal homogeneity and external inhomogeneity. For this reason in the literature this
framework has been associated to clustering. Nevertheless, its use as an heuristic for the
edge weighted clique problem is justified by the fact that when applied to unweighted
graphs, the notion of a dominant set is equivalent to the notion of a clique. Hence, a
dominant set can be seen as a generalization of cliques to graphs with weighted edges.
Moreover, there is another compelling reason to prefer dominant sets over other tech-
niques of clique search: since we are dealing with graphs coming from real images it is
quite common that a spurious node fits in the labeled isomorphism. For instance this is
the case when a part of the model is occluded and distractors of that part are present.
In such cases there is no correct matching node, but assigning a spurious node would
nevertheless yield an isomorphism with a higher global coherency measure: therefore a
greedy clique search would include it as well. On the opposite, by using the dominant
set framework instead of a greedy clique search technique, the nodes with a low coher-
ence with respect to the others are automatically discarded (see Fig. [8.5). This false
positive suppression happens by exploiting the clustering property of the dominant set
framework and without defining any threshold.
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(a) face BP (b) torso BP

(d) right arm BP (e) left arm BP

Figure 8.5: Example of the benefit of dominant set w.r.t. greedy clique search. The face
is obviously not visible, but its back-projection is not null and generates cluster that are
false candidates (a). The Dominant Set generates a match with highly coherent nodes
only, made of the green ellipses (f); an exact graph matching algorithm instead leads to
a greedy match, made of the green and the red ellipses.

In [85] it is shown that dominant sets correspond to local maximizer over the stan-
dard simplex of the quadratic function

f(x) = x'Ax (8.13)

where A is the weighted adjacency matrix of the graph (thus A;; = w(i, j)). These max-
imizers can be found by exploiting the convergence properties of the payoff monotonic
replicator dynamic
it +1) = (Az(t))i/ (x(t)' Az(t))

which is guaranteed to converge to a local maximum when the association graph is
undirected and, thus, the matrix A is symmetric [89]. At convergence the value of the
function f is a measure of the coherence of the extracted set; this property can be
exploited in tracking when the target object disappears or is totally occluded: in such
cases, any match from the labeled graph of the model to the labeled graph generated
with the actual frame will yield very poor values of f and this condition can be used to
automatically detect the absence of the object from the scene and therefore suspend the
tracking (tests will be provided in Section . Finally, as the local maximizer found
by the replicator dynamic is not guaranteed to be the global maximum, we used an
enumeration strategy similar to the one presented in [90].
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8.3.4 Coherence Computation

Given the association graph Ga; o between Gy and G, our goal is to assign to each of
its edges
{[(ut, ve) , (uo,vo)l, [(we, 2t) , (wo, 20)]} € Ea

a weight in the interval [0, 1] which reflects the coherence between the two connected
edge associations (see Fig. [8.4). This measure w : Fa;g — [0, 1] is the sum of several
components, each referring to a specific property of the tracked object that should be
consistent along the video sequence. Since different and independent properties are
considered, the mis-detection of any of them (for example, due to occlusion or deforma-
tion) does not compromise the overall coherence evaluation. We define three properties
that are expected to be consistent along the video sequence: color and structure with
respect to the initial model, and spatial similarity with respect to the object tracked at
the previous frame, if present.

Color-based consistency measured through cluster density and mass: “wg” and “wp,”.

Let us define the normalized density N D() and the the normalized mass NM() as:

_ D (ut)
ND (u) = max D (vy)’
Vur€Cy | U(ur)=l(ve) (8.14)
NM (uy) = M (uy)

M ()

max
N en | l(ut)Zl(’Ut)

then we define the color-based consistency based on density wg and on mass wy,,
respectively as:

wq (C) = V/ND (ug) - ND (vs) - ND (wy) - ND (2) (8.15)

wm (Ct) = V/NM (ug) - NM (v¢) - NM (wy) - NM (2) (8.16)

The clusters are defined over the back-projection that measures the color similarity of
the image I; compared to a color feature of the model: therefore the higher the density
of a cluster, the higher its color similarity to the model. The densities of the four
clusters are multiplied and not summed up in order to reinforce the overall Fa; g color
similarity. Since small clusters might show very high wg, the w,, component reinforces
only the Fa; o that have strong masses.

Structure consistency measured through cluster sizes and inter-cluster distances:
“wsq”. This component reinforces the Fa;o that show structural similarity with the
model, i.e. cluster size variations which are supported by consistent inter-cluster dis-
tance variations. Fig. depicts three different cases. (a) is a typical structure size
reduction (for example, due to camera zoom out) that maintains consistency between
area and distance variations. On the other hand, (b) and (c) depict a structure defor-
mation that is penalized by wsy: in both cases the distance variation between top and
middle clusters is not supported by a similar variation in the size of the cluster. The
structure consistency measure wsq is formalized introducing the linear area ratio

lar : Cy x Cy — [0,00) , lar (ug, up) =
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and the distance ratio

P (w) Pwn)
dr: Ey x Eg — [0,00) ,dr ((ug,vt) , (ug, vo)) = W

Structure consistency of Fay o is obtained when lar measures are similar to the respective
dr measures, i.e. their ratio is close to 1; the consistency measure can then be obtained
modelling the deviation with a Gaussian. To evenly stretch the ratio codomain from
[0,00) to (—o0,00), it is formally appropriate to use a logarithm. Therefore, wyy is
defined as follows:

o —@w-Aww)? —(Qv) —A(w,v)?
Wsd = €xp 252 exp 952 517)
—(Q(w) —Aw,2)> —(Q(2) — A(w,2))* '
P 2072 P 20

where

Q (a) = log (lar (at, ap)) ,
A (b, ¢) = log (dr ((be, i) , (bo, o))

In analogy to what is done with wgq and w,,,, the four contributes of wsq are multiplied
together and not summed up.

Structure consistency measured through cluster relative orientations: “w,”. This
component favors the maintenance of angular consistency of the Fa; . Fig. depicts
two cases: regardless of the overall rotation of one graph compared to the other, (d)
maintains the consistency of reciprocal angles of the segments, while (e) does not and
is therefore penalized by w,. Let’s introduce

P (uy) P (v) x P (up) P (vp)
HP(ut)P(”ut)H : HP(uo)P(vo)H

9 ((ug, vt) , (ug,vg)) = arccos

as the angle between the two segments connecting the centroids of the clusters, the
value w, is defined as:
exp {m - cos [ ((ut, vt) , (w0, v0)) — ¥ ((we, 2¢) , (o, 20))]}

We = exp [} (8.18)

This resembles the Von Mises distribution |91], that is often used to model angular
distributions.

Spatial similarity with the object at previous frame measured through overlap and
rotation: “w,” and “w,”. Let us consider the graph Match;_1, which represents the
tracked object at the previous frame, and the projection of its attributes over the graph
Go; the similarity components w, and w, favor the edges in Fa;o that respectively
maximize the area of overlap and minimize the overall graph rotations with repect to

Matchy—1. In case Matchy—q is partial/missing, these components will provide the
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Io = °0 a,w

[s60="0] O

Jzso=ro| |9z0="0]|

©) (@)

c¢) and w, (d, e), and spatial

Figure 8.6: Structure consistency measure with wgg (a, b,

similarity measure with w, (f, g) and w, (h, i). For the only sake of clarity and without

loss of generality, the Gg and Match;—; are made of only three nodes.
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contribution for the detected portion of the object only. Fig. (f,g,h,i) depicts some
explanatory examples. By defining the overlap ratio Ov as:
2. R(ut N ut—l)
R (ut) +R (ut_l)

Ov (ug,up—1) =

we can calculate w, as:

Wo = v/ OU (ug, us_1) Ov (vs, v;1) Ov (wy, wi_1) Ov (2, 2¢—1) (8.19)
wy is defined to favor the minimization of the rotation of each single segment:

_exp {m - cos [¥ ((ue, ve) , (we—1,v-1))]}  exp {m - cos [J ((wt, 2¢) , (wi—1, 2e-1))]}
exp {m} exp{m}

T

(8.20)



Chapter

Experimental Results

9.1 Test Beds and Evaluation Methodologies

For the tests of object tracking on low-bandwidth video streaming from steady camera
we propose two different surveillance scenarios: one indoor, taken at the hall of the
building of our department and one outdoor, taken from a camera mounted in a public
park. The first scenario is characterized by few moving people and no illumination
changes, while the second is a less-controlled scenario: illumination changes and several
people move in and out from the scene. The second scenario is obviously more chal-
lenging for both the video encoder and the computer-based video surveillance system.
For performance analysis we recorded two videos, called VHALL and VPARK (see Tab.

5.1).

VPARK
=,

b

©

- 1

Scenario Indoor Outdoor
(static camera at building hall) | (static camera at park)
Frame Rate 10 fps 10 fps
Resolution QVGA QVGA
Length ~ 420 s ~ 420 s
(=~ 4200 frames) (=~ 4200 frames)

Table 9.1: Test bed videos for evaluation of object tracking on low-bandwidth video
streaming from steady camera.

The video compression bit-rate used in MOSES is set to either 5 Kpbs or 20 Kbps:
in the first case, it is possible to send up to four video streams (possibly correspond-
ing to four different cameras in a multi-camera surveillance system) on the average
bandwidth of GPRS; however, this is only possible in case the video scene shows lim-
ited presence of moving objects (video motion covers less than a third of the scene)
and rare illumination changes, that is the case of VHALL; if these hypotheses are not
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met, as in the case of VPARK, 20 Kbps video compression has been tested as well:
in this condition it is possible to stream a single video over GPRS network, or four
simultaneous videos over E-GPRS; the transmitted videos have resolution of QVGA -
320x240, that is large enough to make precise segmentation in automatic surveillance.
The given constraints are very demanding: transmitting a video over 5 Kbps or 20
Kbps bandwidths, at QVGA resolution and with sufficient quality and frame-rate to be
processed by a video surveillance system is far from being easy.

The tests measure the pixel-level segmentation and object-level tracking and are
designed to highlight the performance drop due to video compression and streaming: to
this aim, the ground truth is the segmentation and tracking generated on the original
uncompressed video and not manually annotated data, since our intention is not to
measure the generic performance of the segmentation and tracking algorithm.

For each frame, we compute the recall R and precision P in pixel-level segmentation
as follows:

TP TP
r TP+ FN '’ TP+ FP

where T'P indicates the true positives, F'P the false positives and F'IN the false negatives.

The object-level tracking evaluation is provided by comparing the tracking results
on original and compressed videos. Specifically, the evaluation of the loss in tracking
accuracy due only to video compression and streaming is performed as follows: be TR
a generic track of an object and Length(T'R) its length in time. In compressed videos,
a track can be often split in more sub-tracks with different identifiers. Defining T’ Rén‘g
as the 7" track on the original video, and T Ré’%pr (with j=1,..N) the N distinct tracks
on the compressed video in which the TR@MQ was (mistakenly) split; defining a j for
each TR!

orig as:

j = argmax Length(TRf;’nj;W) (9.1)
J
then the accuracy ACC can be measured as follows:

b T Ripr
% TRorig

Since frames are lost during the transmission, we need a way to align the two videos
(original and compressed) for having a correct comparison. The embedding of the frame
number used to measure the latency (described in Section is exploited also for video
alignment.

The performance of the tracking with freely moving camera is obtained on the com-
parison of the Graph-Based (GB) approach proposed in Chapter [§| against Camshift
(CS) and a particle filtering tracking based on color features (PF) similar to that pro-
posed in [92]. For the sake of a fair comparison the three approaches make use of the
same color space (see eq. .

In contrast to our approach, CS and PF do not exploit structural models. Therefore,
we issue several independent instances of those algorithms on each single feature of the
object model. They work well in standard conditions, but for the intrinsic limitation
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| “ Video 1 [ Video 2 [ Video 3 - aand b ‘
Generic Outdoor, moving Outdoor, moving Indoor, static cam
info cam, 1 person cam, 2 persons 3 occluding people
Model F,T,P,.LARA F, TP F,THP [FTLARA
Challenges Severe scale Scene cuts, total obj. severe occlusions
vars and rotations, disapp., scale vars, several color distractors
camouflaging bkg | rotations, camouflaging bkg

Table 9.2: Benchmark (F=face, T=torso, H=hands, P=pants, LA,RA= left/right arm).

due to the lack of a structure model, they are likely to fail in challenging conditions,
especially in the case of occlusions.

The test bed consists in this case of 3 videos and one of them (Video 3) is taken from
AVSS 2007 datasetﬂ In this latter video, the tracking is applied twice, on two different
target objects. Tab. summarizes the main characteristics of the benchmark videos.
In all cases the target objects are persons.

Differently from the ground truth of the first scenario, in this case we manually
extracted the ground truth (with the support of the VIPER-GT tool E[), consisting
of several oriented bounding boxes, each containing a single part of the object to be
tracked. Given the ground truth and the output of the tracking algorithms, it is possible
to automatically compute the performance based on a set of metrics. Specifically, using
the VIPER-PE tool 2, we obtained true positives, false negatives, false positives and,
from them, recall and precision; all these measures were extracted both at object and
pixel level. For object wise evaluation, the provided measure is a discrete value, and it
is obtained comparing the boolean value “present vs. not-present” of the ground truth
of an object part with the boolean value “detected vs. not-detected” of the algorithm
response for the corresponding object part. For pixel wise evaluation, the provided
measure is the F-measure defined as an aggregation of recall R and precision P:

2.R-P
~ R+P

F =1 reveals either a perfect matching or the correct tracking suspension when the
object is absent from the scene. Conversely, F' = 0 reveals either a total failure or the
detection of an object when this is not present. The pixel-wise recall and precision,
which constitute the F-measure, are computed aggregating together the pixel measures
performed separately on each single model class.

9.2 Results and Evaluations

The pixel-wise evaluation of segmentation on low-bandwidth video streaming from
steady camera are presented in Fig. Each dot represents the recall-precision of
a single video frame. Obviously, the closer the points are to the upper-right corner (cor-
responding to R =1 and P = 1) the higher the accuracy is. The graphs also report the
average recall and precision, represented by a green circle (MOSES) and brown square
(Real Media and Windows Media). The average and variance of recall and precision,

'"URL ftp://motinas.elec.qmul.ac.uk/pub/multi_face
*URL: viper-toolkit.sourceforge.net/



96 Experimental Results

computed on the correctly received frames only, are summarized in Tab. This table
also shows the percentage of frame losses due to the strong compression rates.
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Figure 9.1: Recall vs Precision for pixel-level segmentation over VHALL and VPARK
at QVGA resolution.

We initially considered the hardest case in terms of bandwidth, by supposing to
send four video streams over GPRS, coding each video at 5 Kbps. As a comparison, we
tested both MOSES and Real Media. Windows Media and VLC were unable to encode
QVGA video at such a low bandwidth.

The graph in Fig. shows precision and recall for the VHALL: even with such
a limited bandwidth, the segmentation based on MOSES streaming is very close to the
one obtained on the original video. This result does not hold in the case of the outdoor
sequence of the VPARK (Fig. [9.1(b)): in fact, the extensive presence of moving objects
and the frequent illumination changes make the compression less effective; in this case
the average recall of MOSES is less than 70% and the precision only approximately 75%
(see Tab. . Thus, we also performed a test over EDGE-GPRS using 20 Kbps for
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% of Segmentation Tracking
lost Recall Precision # of | Tracking
frames | avg. | std.dev. avg. | std.dev. | Objs | Accuracy
Mosgs, VHALL@5Kbps 0.41% | 82.95% 1.99% 87.31% 1.40% 29 96.51%
RealM, VHALL@5Kbps 8.87% | 77.90% 1.63% 72.0% 2.54% 29 81.32%
Mosgks, VPARK@5Kbps 0.11% | 68.15% 1.46% 74.8% 1.68% 49 89.11%
RealM, VPARK@5Kbps 14.60% | 68.67% 1.35% 66.8% 1.91% 49 67.95%
Moses, VPARK@20Kbps 0.34% | 81.00% 0.98% 83.9% 1.40% 49 91.91%
RealM, VPARK@20Kbps 0.02% | 80.53% 0.93% 80.2% 1.08% 49 91.83%
WindM, VPARK@20Kbps 1.81% | 72.42% 1.32% 80.9% 1.18% 49 89.87%

Table 9.3: Segmentation and tracking accuracy over VHALL and VPARK at QVGA
resolution.

each video stream. Windows Media supports this bitrate (VLC still does not), and
it is then added to the comparative tests (Fig. and Fig. 9.1(d))). Real Media
shows a better recall on Windows Media, but has similar precision. However, MOSES
performs better than both the compared systems in almost all working conditions, on
recall, precision and frame losses.

Tab. summarizes also the results for object-level tracking. It is straightforward
that with 20 Kbps the performance of the tracking (whatever system is used) is not
strongly affected, having approximately 90% of accuracy compared to the tracking on
the original video. Instead, when the bitrate falls to 5 Kbps, only MOSES is able
to maintain reasonable performances. The tracking accuracy on the compressed video
depends not only on segmentation accuracy but also on the frame loss rate. The tracking
of Real Media on the VPARK at 5 kpbs strongly suffers from the high frame loss rate
(14.60%), that is concentrated in the portion of the video with higher motion. A sample
of the tracking in the park video sequence at 5 Kbps is shown in Fig. the tracking
consistency is visually represented by the superimposed trajectory of the objects.

Figure 9.2: Snapshots showing the video tracking obtained with SAKBOT on the Park
sequence: (a) original, (b) Mosgs @ 5 Kbps, (c¢) Real Media @ 5 Kbps. The tracking
numbers on the objects are just sequential IDs and do not need to be consistent between
one video and the others.

Regarding the tracking with freely moving camera, the pixel-wise evaluation is shown
in Fig. where the frame-by-frame F-measure is plotted. On the top part of each
measurement plot, a colored bar gives a schematic representation of the challenges along
the time (e.g. zooming in/out, rotation, occlusion). The legend is reported in Fig. (9.3
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- MOVEMENT -ZOOMING ouTt ZOOMING IN - ROTATION PARTIAL OCCLUSION TOTAL OCCLUSION lSCENE CUTS

Figure 9.3: Legend of the timeline shown on the top of each video measurement in Fig.
and

The object-wise evaluation is shown in Fig. (refer again to time-line legend of
Fig. 19.3). Each object model class (face, torso, etc.) is represented by a block of 4
colored lines: the black line represents the ground truth, showing the presence/absence
of the object class; the colored lines represent the detections produced with the three
approaches (cyan for CS, green for PF and magenta for GB). In case the model class
is present and the tracking algorithm detects a wrong match for that class, the colored
line is absent (e.g. Fig. in GB, frame 43 of Video 1, right arm). In case the
model class is absent and the tracking algorithms still detects a match (false positive),
a colored line is present (e.g. Fig. in CS and PF, frame 200 on Video 1, face).
Tab. reports the summary of the performance on the benchmark videos. The three
original video sequences, the four post-processed videos with our graph based tracking
and the four ground truths in VIPER XML meta-data can be downloaded from the
author’s home page EL

Since Video 1 does not contain severe occlusions, scene cuts or object disappearances,
the structural model of GB does not significantly increases the performance compared
to CS or PF, with exception of frames 199 and 231, when the face exits from the
view: our approach correctly suspends the face tracking to resume it when it reappears,
whereas the other approaches fail (see Fig. Video 1, 5th block of measurements
(“Face - Model 0”), around frame 200: GB tracking (magenta bar) behaves coherently
with the ground truth (black bar), while CS and PF completely fail). The correct
suspension of the tracking of the only class “face” is an example of the advantage of
using dominant sets instead of greedy clique search, that would have generated instead
a face false-positive detection in order to force a complete subgraph isomorphism.

In Video 2, the sharp scene cuts (frames 156 and 231) and the full object disap-
pearance (frame 156) make the performance of CS and PF drop severely. Our approach
instead is not affected at all, suspending the tracking when necessary and resuming it as
soon as the structure of the model is found again (in Fig. the detection colored
bars of GB are correctly suspended at the scene cut and resumed a few frames after the
re-appearance of the object; in Fig. the F measure to 1 demonstrates the correct
tracking suspension. As soon as the object reappears, the F measure of GB goes to
0 for a short time since the algorithm takes a few frames to locate the structure and
resume the tracking.

Video 3 is a static camera sequence but the persons occlude each other several
times and the scene is full of color distractors (e.g. the several skin-colored regions of
faces and arms, the two blue jeans, the dark t-shirt of the person on the right and the
dark cupboard on the back wall). In such conditions the use of a structural model is
determinant to have a successful tracking. In the specific, from Fig. [9.5(b)|it is possible
to appreciate that, in Video 3-a, GB approach suspends the tracking during the several
total occlusions, while PF and (especially) CS suffer (see F-measure in Fig. [0.4(c)). In
Video 3-b, a severe occlusion around frame 245 hides 3 object classes on 4: the GB
approach suspends the tracking of the whole object because the structural coherency

3URL: imagelab.ing.unimore.it/imagelab/~gualdi/
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Object Recall (%) Precision (%) F-measure (%)

level CS PF GB CS PF GB CS PF GB
Video 1 96,72 | 96,41 | 99,24 87,66 | 74,52 | 95,31 || 91,97 | 84,07 | 97,24
Video 2 92,83 | 95,99 | 100,00 || 66,86 | 89,00 | 97,20 || 77,73 | 92,36 | 98,58
Video 3-a || 30,25 | 72,46 | 97,87 12,94 | 69,89 | 89,58 || 18,13 | 71,15 | 93,54
Video 3-b || 88,59 | 86,28 | 98,13 91,55 | 79,39 | 87,65 || 90,05 | 82,69 | 92,59
Pixel Recall (%) Precision (%) F-measure (%)

level CS PF GB CS PF GB CS PF GB
Video 1 84,54 | 66,92 | 85,71 52,77 | 49,80 | 62,14 || 64,09 | 55,41 | 71,16
Video 2 53,20 | 49,42 | 84,87 36,85 | 64,64 | 76,20 || 43,34 | 55,50 | 79,78
Video 3-a || 7,93 | 30,68 | 65,26 || 4,76 | 36,93 | 53,42 || 5,67 | 32,07 | 57,67
Video 3-b || 65,06 | 44,20 | 71,95 69,67 | 74,30 | 63,65 || 64,66 | 52,74 | 66,90

Table 9.4: Summary of the performance.

is not found. Conversely CS and PF do not account for structure and continue the
tracking of the only class that is still visible, yielding higher F-measures.
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Figure 9.4: Pixel-level measure of performance.
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Figure 9.5: Object-level measure of performance on Video 1 and 2. The figure is best
viewed in the electronic version.
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Introduction

There are many scenarios of mobile video surveillance where obtaining object tracking
can be not only extremely challenging (due to type and degree of camera motion, number
of objects to track, visual occlusions and clutter, etc.), but also not necessary. Tracking
is indeed a very rich piece of information, however for many surveillance purposes just
object detection is needed: this is the case of thesis part [[II} that deals with appearance-
based object detection in mobile surveillance scenarios. The appearance is a feature that
can be used regardless of the state of motion that lies behind the generating object,
and this condition is very useful in mobile contexts. In the specific, we focus our
attention on the detection of pedestrians (i.e. standing people), for two reasons: on
one side, pedestrian detection is actually a very active research topic and on the other,
people are the main objects of interest in surveillance and security. Nevertheless, since
the pedestrian is an extremely articulated object equipped with a significant number
of degrees of freedom, it is clear that what is proposed for pedestrians can be easily
extended to other classes of objects.

Real-world outdoor scenes are typically very challenging even to modern state of
the art pedestrian classifiers. For this reason, for example, a complete benchmark in-
frastructure for training and testing of pedestrian classifiers, provided with hours of
annotated video data recorded in real-world scenarios and with off-the-shelf procedures
for assessing pedestrian detection performance has been recently proposed [2]. Given
this challenging context, after having chosen and implemented a state of the art clas-
sifier, we propose a set of innovative methods to tackle two different subjects related
to pedestrian detection: classification performance and detection speed. Regarding the
first, we propose improvements over the original proposal and then introduce additional
modifications to make it suitable also for the detection of sub-parts of pedestrian, specif-
ically tackling, but not being limited to, the head detection. On the second, since high
accuracy classifiers can be quite demanding on CPU cycles, we propose methods to
reduce the computational load of the detection step.

The methods proposed in this thesis part are effectively used in the prototype de-
scribed in Appendix [A] for video security aimed at the automatic detection of construc-
tion workers that do not wear the protective helmet.

Publications related to Part ; see the list of author’s publications, page m
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10.1 On Pedestrian Classifiers

Pedestrian detection in images and videos is a problem that has been strongly ad-
dressed in computer vision within the past five years. The task is made harder in com-
plex environments where standard approaches based on foreground segmentation and
appearance-based tracking become unreliable because of occlusions, moving cameras
or challenging illumination conditions. It is therefore necessary to adopt probabilis-
tic models and sophisticated pattern recognition techniques to handle uncertainty and
noise.

The approaches proposed in the literature can be summarized in two main classes
[93]. The first one makes use of a model of the human body by looking for body parts in
the image and then imposing certain geometrical constraints on them [3594-96]. One
relevant limitation of these approaches is that they require a sufficiently-high image
resolution for detecting body parts, and this is not appropriate in many surveillance
contexts, especially when the camera sensors overlook long views.

The second class of proposals, often called holistic approaches, is based on applying
a full-body human classifier over all possible sub windows of a given image [1,/97-H103]. A
wide range of features has been proposed; among them, Haar wavelets [104], histogram
of gradients (HoG) [105], a combination of the two [106], histograms of differential op-
tical flows [102], shapelet [107|, covariance descriptors [1], etc. Over these features,
the classifiers most typically used are SVMs (typically linear, as in [102] or histogram
intersection kernels [108] SVMs) or boosting algorithms (like AdaBoost [101], Logit-
Boost [1,/109], MPL Boost [110], etc.) usually combined in cascades.

A lot of efforts have been spent to propose classifiers that minimize the computa-
tional load, maintaining similar accuracy of state of the art methods. The compelling
reason is the following: even if the single classification step is by itself fairly fast (i.e.
a millisecond of CPU time, or a fraction of it), the procedure is to be repeated several
times (typically tens of thousands or more) in order to obtain object detection over a
whole image. Some of the optimizations propose to use cascade classifiers with features
that were originally proposed to work on slower classifiers (e.g. boosting with HOG
features [103]); a recent paper [98] proposes to employ both intensity-based (those used
in [101]) and gradient-based features (called edge orientation histogram, EOG) with
Real AdaBoost: instead of using the standard boosted cascade, a novel cascaded struc-
ture is proposed in which both stage-wise classification and inter-stage cross-reference
information are used. Yao et al.in |[97] speeds up the covariance descriptor classifier of [1]
through a smart use of covariance descriptors (i.e. considering subsets of the matrices)
and embedding motion information in the descriptor itself. Another optimized version
of it is in [111], where the inverse of an exponential mapping, used to map covariance
matrices into the euclidean space of symmetric matrices, is avoided.

10.2 Pedestrian Classification with Covariance Descrip-
tors

As founding block of our studies we adopt the pedestrian classifier based on covariance
descriptors proposed by Tuzel et al. [1], for three main reasons: first, it is demonstrated
to perform better in per-window classification with respect to the popular HoG SVMs
[105]; second, it is based on a rejection cascade of boosting classifier: this architecture
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benefits of the property that a very reduced portion of the rejection cascade is used
when classifying those patches whose appearance strongly differs from the trained model
(reducing therefore the computational load); third, the covariance descriptor is very
flexible and can be modeled according to the different application contexts: for example,
it can be successfully used for region matching and texture classification [112]).

Without digging in details, the classifier is based on a rejection cascade of Logit-
Boost classifiers (the strong classifiers), each composed of a sequence of logistic regressors
(the weak classifiers). The original Logit-Boost classifier [109] is modified to account
for the fact that covariance matrices do not lie on euclidean space but on Riemannian
manifolds. Each logistic regressor is trained to best separate the covariance descriptors
that are computed on randomly sampled sub-windows of the positive (pedestrian) or
negative (non-pedestrian) training images.

Given an input image I and the following 8-dimensional set F' of features (defined
over each pixel of I):

I T
F= [:c, Yy el [Tyl A/ 12 + 12, | Loz | s [yl , arctan ||Iy|| (10.1)
xT

where z and y are the pixel coordinates, I,,I, and I.;,I,, are respectively the first and
the second-order derivatives of the image, it is then possible to compute the covariance
matrix of the set of features F' for any axis-oriented rectangular patch of I. Regardless
of the specific composition of F', this matrix is referred as “covariance descriptor”: as
aforementioned, it is proved to be a very informative descriptor for several computer
vision tasks and, moreover, extremely well suited for pedestrian classification. Fur-
thermore, since the sub-windows associated with the logistic regressors are rectangular
and axis-oriented, the covariance descriptor can be efficiently computed using integral
images [112].

The main issue related with covariance matrix approaches is that they lie on a Rie-
mannian manifold, and in order to apply any traditional classifier in a successful manner,
it is necessary to map the manifold over an Euclidean space. A detection procedure
over a single patch involves the mapping of several covariance matrices (approx. 350)
onto the Euclidean space via the inverse of the exponential map [1]:

log,(Y) = log (u‘%Yu%) % (10.2)

This manifold specific operator maps a covariance matrix from the Riemannian manifold
to the Euclidean space of symmetric matrices, defined as the space tangent to the
Riemannian manifold in p, that is the weighted mean of the covariance matrix of the
positive training samples. Each matrix logarithm operation (equation requires at
least one SVD of an 8x8 matrix, and such operation is known to be computationally
demanding.

The original algorithm in [1] proposes to train a cascade of LogitBoost classifier made
of 30 stages, and exploiting logistic regressors as weak classifiers. They also suggest to
use the well known INRIA pedestrian database |105] for training data. We implemented,
trained and tested this precise configuration, that we name as “INRIA-based detector”
for the rest of the thesis part.
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10.3 Improving Object Classification Accuracy

Although the classifier introduced in the last section provides remarkable human detec-
tion performance in per-window measurements, when applied to pedestrian detection
in images and video, it is likely to produce false positives and negatives, due to vi-
sual distractors, clutter, occlusions or unusual poses: actually, this is common to all
classifiers.

Therefore in Section [11.1] we propose to take into account the complexity of the
observed scenes to boost the classification accuracy. This is obtained replacing the final
stages of the rejection cascade, that is trained for generic human detection, with specific
and dedicated cascades trained on positive and negative samples (semi) automatically
acquired from that specific view only.

When the covariance descriptor classifier is applied to objects with non-rectangular
shape (e.g. holes, heads, wheels, etc.), the performances in terms of classification ac-
curacy degrade due to the inclusion of non-discriminative pixels within the rectangular
patches associated to the logistic regressors. Hence, in Section [11.2] we propose to make
the classifier suitable to the case of circular and concave features by using a polar rep-
resentation which unrolls the slice of an annulus in a rectangular patch. This change of
representation allows the direct exploitation of covariance descriptors for concave circu-
lar patches and makes the classifier suitable, for instance, for the detection of the head
of the pedestrians.

Locating circles in images has been deeply explored in the literature, for both robotic
or industrial applications [113], and 3D object reconstruction or traffic sign recognition
[114]. All the proposed methods present two main shortcomings for our purposes:
first, they rely on fitting the pixel values or edge points with a certain parametric
function. This can be difficult to generalize and is heavily affected by the unfavorable
correlation between strong false positives and weak true positives (weak signal problem).
This is a typical limit of parametric approaches such as Hough transforms. For this
reason, [114] proposes to measures a curve’s distinctiveness through a one-parameter
family of curves, in order to gain in accuracy. The second shortcoming regards the
computational complexity. Most of these methods are highly time consuming, tackling
the problem as an optimized search in highly dimensional spaces. In |113] the problem
is formulated as a maximum likelihood estimator and the method is proved to be fast
and accurate also in the case of occlusions, but it relies on the good extraction of the
points describing the curves. Differently from all these works, the approach we propose
exploits appearance-based features, making it suitable also in case where the objects to
classify are not easily modeled by parametric curves or precise edges cannot be extracted
due to the complexity of the scenes.

In Section [11.3] we show that the computation of covariance descriptors using multi-
spectral (color) image derivatives yields more accurate results than using plain gray-
level derivatives, as proposed in [1]. Several works demonstrate that exploiting color in
addition to luminance yields favorable results for image derivatives and for other related
tasks, like edge detection or texture classification. A seminal work is [115], where the
author proposes a method for computing a single image derivative from a RGB image.
In [116], color is exploited for (sub-pixel) edge detection defining a local directional
measure of multi-spectral contrast. In [117] an operator called compass finds edges
without the assumptions that regions on either side have constant color. Eventually,
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in [118] describes the extension of the Mumford-Shah functional |[119] to color images.
Without penetrating in the details of this research topic, we just verify that the use of
simple multi-dimensional gradient methods can improve performance. The suitability
of the proposed solutions on polar images and on multi-spectral gradients are verified
in Chapter [14] on two case studies, namely head detection and polymer classification.

10.4 Optimizing Object Detection Approaches

The two most exploited approaches to perform object detections within images are
sliding window (e.g. [1;/101}/105]) and Hough paradigm (e.g. [120]). The first paradigm
is based on the idea of passing to the window-based classifier all possible sub windows
of an image; since all classifiers tend to trigger multiple detections over a single object,
the detection step is typically followed by a non-maximal suppression. In the second,
instead, each feature is first extracted over the image, and then it casts votes, so that
the objects to detect will accumulate votes from all the features, in a Hough fashion.
Focusing on sliding window, the approach has the drawback of brute force methods,
that is the high computational load due to the number of windows to check, that grows
quadratically in each dimension to span over [121]; the state space of the sliding window
typically consists of image coordinates and scale, but may also contain aspect ratio and
rotation. The proposals to decrease its computational burden are basically the following:

1. prune the set of sliding windows exploiting other cues (e.g. motion [97], depth
[122], geometry and perspective [123], or whatever cue that is different from the
appearance cue used by the detector itself),

2. hardware optimized implementation using GPUs [124],
3. efficient sub-window space exploration [121}125].

In Chapters [12| and we propose new methods to speed up the detection and we
purposely avoid approaches (2) and (3): the former, because we think that the load
of object detection can be reduced as an algorithm itself, beyond the use of massive
multi processors architectures; the latter, because those methods search for the global
maximum of the function at a time, but we do not know a priori how many objects are
going to be present in the image.

Specifically in Chapter [12] we propose a two-fold method that belongs to the class
(1), and that exploits motion and perspective to reduce the computational burden of
the sliding window approach. As a first contribution, we use motion information as fo-
cus of attention for human detection; differently from other approaches we avoid to use
motion-based people segmentation since it is not possible to rely on clear segmentation
in presence of strong visual clutter or with moving cameras. For this same reason, we
purposely avoid the approach proposed in |97, that describes how to include motion
information as a feature in the covariance descriptors for classification purposes: this
approach implies a robust detection of the motion. Moreover, motion observation can
be view-dependent, making the training set less expandable to different scenes and view
points. Our proposal instead is to drive the search for humans on the areas where mo-
tion is present or was present in the recent past. This provides a good trade-off between
searching all over the image (that has the drawback of heavy computational load) and
limiting the search to current moving regions only (that hinders to detect still people in
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the scene). Additionally, even if the motion information is not extremely accurate, the
detection recall is not going to be affected. As a second contribution, we use a rough
estimation of the scene perspective to reduce false detections. More specifically, since we
consider mobile video surveillance scenarios where the geometry of the observed scene
is rather dynamic, we developed an automatic calibration procedure which estimates
(through RANSAC) the reasonable height of standing people in function of their posi-
tion in the scene. This estimate is used to discard the windows that are significantly
out of scale. The use of RANSAC allows the system to use an unsupervised approach
for the perspective learning. The paper in [123] presents a very nice statistical frame-
work to model the relationship between objects and scene geometry, by modeling the
interdependences between objects, surface orientations, and camera viewpoints. This
framework effectively evaluates the correct perspective of objects in the scene, in a way
similar to our proposal. Both the aforementioned approach can be effectively used to
make the sliding window approach more suitable for real-time applications. Moreover,
they have the positive effect to increase detection performance in terms of precision.
Detailed experimental results will be provided in Chapter

Beside the exploitation of additional cues (motion, perspective, etc.) to speed up
the computation of the sliding window detection, in Chapter we introduce an in-
novative technique that does not belong to any of the three afore-listed classes, since
it replaces the sliding window paradigm: indeed we claim that, by exploiting only the
features used by the classifier itself, it is possible to drive a more efficient exploration of
the state space of the sliding window, in order to effectively detect pedestrians with a
much lower computational effort. Additionally, we demonstrate that the data obtained
by such method can be easily plugged into a Bayesian recursive filter, in order to exploit
the temporal coherency of the pedestrians in videos. It is not our intention to challenge
pedestrian classification techniques, neither to confront with pedestrian detectors tech-
niques which exploit multiple cues (i.e. motion, depth or geometry) in order to boost
the performance of the underlying classifier.

Our method uses Monte Carlo sampling to provide an incremental estimation of
a likelihood function and our innovative contribution is the use of the response of the
rejection cascade to build such function. In practice, this response (given by the number
of boosting classifiers that successfully detect the object) is used to increasingly draw
samples on the areas where the pedestrians are potentially present, distributing the
new samples among the potential targets and avoiding to spend search time over other
image regions; this procedure is known as density interpolation [126]. When working
with videos, this likelihood function is then plugged into a Bayesian recursive context,
through a particle filter. Several works [69}126] have used particle filter to track a single
object also in challenging situations. However, one important shortcoming of particle
filters is that they are poor when the target distribution is multi-modal. Multiple modes
can be generated either by ambiguity on the object state due to insufficient measure-
ments or clutter, or by measurements coming from multiple objects. Standard particle
filtering is not suitable for tracking multiple objects since it may happens that all the
particles quickly migrate to one of the modes, subsequently discarding all other modes
(problem of sample depletion). For this reason specific particle filtering techniques to
handle multi-target tracking are proposed [127-H129]. Besides this, another important
feature is the ability to handle the entrance and exit of objects, i.e. to manage a vary-
ing number of objects. This is usually done by first issuing a detection algorithm and
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then assigning multiple particle filters to the obtained detections. The method has two
shortcomings: first, it requires to periodically perform detection and deciding when to
do it is a critical trade-off between performance and possible loss of targets; second, this
approach can quickly degrade performance with the increase of the number of targets
(the number of particles linearly increase with the number of objects). An alternative
approach is to use a particle filter capable to work with multi-modal posteriori, such as
the mizture particle filter (MPF) proposed by Vermaak et al. [130] in which the different
targets corresponds to the modes of the mixture pdf. This approach has been further
refined in the Boosted Particle Filter (BPF) introduced by Okuma et al. [129], where a
cascaded AdaBoost algorithm are used to guide the particle filter. The proposal distri-
bution is a mixture model that incorporates information from both the AdaBoost and
the dynamical model of the tracked objects. Our proposal, based on [126], is able to
deal with multiple targets maintaining a fixed number of particles, but in addition it is
able to handle the entrance and the exit of objects without using additional detection
algorithms.
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Improving Covariance Descriptor
Classification

In this chapter we propose three methods, namely relevance feedback, polar image
transformation and multi spectral image derivatives, to improve the performance of the
LogitBoost classifier proposed in [1]. The methods were developed within the scenario of
constriction working sites, that embodies an example of mobile video surveillance system
since it is distributed and composed of multiple cameras that are moved from time to
time, to account for the morphological changes in the structure of the construction
site. This environment is typically very cluttered, with several people and machineries
moving all around and undoubtedly constitutes a very challenging scenario. Details of
a case study are provided in Appendix [A] Regardless of the specificity of the test bed,
the proposed methods are generic and can be easily extended to many other mobile
scenarios.

11.1 Additional Learning with Relevance Feedback

We applied the INRIA-based detector (see Section in construction working scenar-
ios; confirming the robustness of the approach, the detection rates are good, especially
on positive detections; in fact the appearance of human silhouettes in this specific con-
text does not differ much from the one coming from a more generic scenario: at the
low resolution used to observe the humans in our working system (just a few pixels in
width and height), the only noticeable difference is the presence of a protective helmet:
being the features mainly based on image derivatives (neither color, nor luminance), the
visual appearance of a helmet does not differ from human hair or just a cap. For this
reason, the miss rate reported in |1 is approximately confirmed in our context also.
On the opposite, the performance on negative samples is seriously challenged: as a
matter of facts, the extremely cluttered scenarios of construction sites produce a rate
of false positives that is higher than the one produced on the INRIA test bed (the false
positives per window, FPPW, are increased by a factor of 6 approximately). We tackle
this problem training a few extra cascades in a relevance feedback (RF from now on)
fashion [131], that will replace a portion of the rejection cascade in the INRIA-based
detector; it is important to notice here that we do not want to replace the whole training
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Figure 11.1: Asymptotic behavior of the last cascades of the LogitBoost classifier based
on covariance descriptors, trained on INRIA pedestrian dataset. The rates are expressed
as rate of detection (rejection) for positive (negative) test samples.

of the INRIA-based detector, since it provides by itself remarkable performance even
in our challenging scenario, but we adapt and improve a few stages of the cascaded
detector with additional scenario- and view-dependent video data in a manner that will
be compliant with the requirements of mobile surveillance systems.

The performance of the 30-cascades of the INRIA-based detector is asymptotic (see
Fig. , resulting in limited rejecting abilities of the last cascades; therefore it is
reasonable re-train them, using additional RF training data, that is generated using a
twofold procedure:

1. implicit (assessment free) RF feeding: the pool of negative examples is enriched
with background images from our construction working site that are automatically
extracted using SAKBOT (see Chapter [7). In order to be sure of the absence of
humans inside the scene, we accept background images only when no motion is
detected during a time gap of a few minutes (typically 10). In our test bed of
videos from construction working sites, we verified that it is feasible to extract
several person-free images on daily basis;

2. explicit (with assessment) RF feeding: from the pool of detections obtained with
the INRIA-based detector (run on a few videos from a specific view), an user
provides an assessment, extracting some true positives and false positives, that
will respectively enrich the positive and negative training data.

Differently from the implicit feeding, that produces only generic negative training
data, it is very important to note that the explicit feeding enriches also the positive train-
ing data: the additional negative samples extracted here have a strongly-informative
content, being all of them (false) positive detections according to the INRIA-based de-
tector. Therefore, any additional cascade learnt using these specific data as negative
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training data will generate a hard split inside the space of positive detections modeled
so far. By reinforcing the positive training data with samples (snapshots of workers)
taken from the same context of the false positives, the cascade learner can better model
the logistic function of the LogitBoost.

These re-trained cascades using RF training data are placed at the final stages of the
rejection cascade process of the INRIA-based detector; therefore it is not possible, at this
point, to raise the performance over the true-detections (what was wrongly rejected by
the first cascades cannot be recovered then, because of the nature of rejection cascades),
but conversely it is still possible to act in a strong manner on the reduction of the false-
detections, that is exactly our goal.

The learning time of a complete 30-cascades LogitBoost detector on Riemannian
manifolds is very long (in the order of days of computation); since the cardinality of
the miss-classified negative samples decreases exponentially at each cascade (see Fig.
, the longest time is spent on learning the first cascades. For this same reason,
the re-training of the last stages of the LogitBoost classifier using RF training data is
computed in a sufficiently short time (in the order of a couple hours of computation),
so that it can be considered as a symptomatic operation: in other words the additional
cascades based on relevance feedback data could be removed and recomputed whenever
the performance of the system begins to degrade (e.g. when the viewed scene is subject
to remarkable changes, that is a common situation in construction working sites).

In case it is not possible to provide explicit assessment, additional learning on im-
plicit data only can be performed, making the system totally autonomous and suitable
for scalable multi-camera systems.

11.2 Polar Representation of Covariance Descriptors for
Circular Features

After having detected the pedestrians in an image or a video footage, it is often useful
for surveillance purposes to identify the precise head position, in order to extract further
information (person gender, ethnicity, presence of headgears, cues for face recognition,
etc.).

Asintroduced in Section it is possible to apply the generic covariance-descriptor
classifier to head detection as well, but when this algorithm is applied to objects with
non-rectangular shape (e.g. holes, heads, wheels, etc.), the performances in terms of
classification accuracy degrade due to the inclusion of non-discriminative pixels within
the rectangular patches associated to the logistic regressors.

Aiming to classify circular features, the use of patches with generic circular shapes
would catch variations more accurately than just using axis-oriented rectangular shapes.
Indeed, using circles or annulus would exclude from the covariance matrix computation
all the pixels that do not strictly belong to the circular shape to recognize. Even if this
technique would yield more accurate classification results, the use of non-rectangular or
non-axis-oriented patches would hinder the use of integral images, that are strongly ex-
ploited by the classifiers for fast covariance matrix computations [112]]. This limitation
can be solved by the use of polar images; defining a reference point C' (z¢,yc) and:
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Figure 11.2: (a) a patch used for head classification; (b) examples of rectangular patches
used by weak classifiers according to the original proposal ; (c) polar transformation
of patch w.r.t. the center of image (a); (d) rectangular patch on polar image; (e)
transformation of the patch in (d) onto the original image; (f) examples of rectangular
patches used by weak classifiers learnt over polar images.
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the polar image of I (z,y) w.r.t. to point C is I, (p,?) (see Fig. [L11.2(a)| and [11.2(c)).

Indeed, given an image and its polar transformation w.r.t. the image center, any
slice of annulus on the original image (centered in the image center) can be represented
as an axis-oriented rectangular patch in the polar transformation. Therefore, the polar
transformation creates a bridge between the circular patches (useful for classification
purposes) and the rectangular patches (needed by the intrinsic classifier architecture);
given an image to classify, as first step the polar image transformation is computed
and then the weak classifiers are applied on it: specifically, each of them operates on
a rectangular sub-window over the polar image, that represents a slice of annulus over
the original image (see Fig. [11.2(d)| and [11.2(e)): this procedure generates a classifier
more suited to circular shape classification.




11.3 Multi-Spectral Image Derivatives for Covariance Descriptors

119

11.3 Multi-Spectral Image Derivatives for Covariance De-
scriptors

In appearance-based object classification, it is common to avoid the use of chrominance
since in most cases color does not convey any discriminative information (e.g. in the
classification of pedestrians, vehicles, textures, etc.). Instead, since color can be suc-
cessfully used to compute more accurate edges w.r.t. luminance images [115-118], we
claim that the use of chrominance for image derivative computation can improve the
classification results also.

In order to compute covariance descriptors sensitive to luminance and chrominance,
we exploit multi-dimensional gradient methods and define the following directional
derivatives for the RGB color space:

srGE _ |91 ’ 5£ oB|* [0 — * |9B)
r oz ox O By oy (11.2)
pron _[|0°R > |exc)?  |o*B|? [RGB _ PR|> |2G|* |92B?
o\ | 0z 0x2 ox2 |’ W\ | 0y? Oy? oy?
and similarly for Lab color space:
b — fle gal* | ob ke — 2 8a2+ uly
T Ox dy 6y (11.3)
ILab 62L 82& 2 + 67217 . Lab 82L 82 + 87217 ?
Tz Or2 (%2 ox2| Iy 0y2 Dy

At this point, it is straightforward to extend equation to RGB and Lab color spaces:
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Chapter 1 2

Exploit Motion and Perspective to Speed
Up Sliding Window

As introduced in Section pedestrian detection at frame level is usually performed
with a sliding window approach, that is a brute force search of the learned pattern in
the whole space of possible window states. This section propose methods to reduce
the number of the windows to classify in order to obtain a real-time response from
the system. Actually if it were possible to obtain reliable object tracking in the scene,
this exhaustive search could be avoided, performing focused human classification over
the bounding box of the tracked objects; however in Chapter we stated the inten-
tion to study appearance-based methods assuming to work on scenarios where tracking
algorithms are not available.

Let’s name the set of all possible windows as “Sliding Windows Set”, or SW.S:
this set spans over the whole space of window states: typically position and scale,
w = (wy, wy, w,) (we do not consider aspect ratio, nor rotation). The cardinality of
the SWS depends on the size of the image, on the range of scales to check and on
the stride of scattering of the windows: regarding this latter parameter, to obtain a
successful detection process, the SW.S must be rich enough so that at least one window
targets each pedestrian in the image. To be more precise, every classifier has a degree
of sensitivity to small translations and scale variations, i.e. the response of the classifier
in the close neighborhood of the window encompassing a pedestrian, remains positive
(“region of support” of a positive detection). It is then straightforward that having a
sufficiently wide region of support can be a very desirable property for the sliding window
detection process, since the SW S could be uniformly pruned, up to the point of having
at least one window targeting the region of support of each pedestrian in the frame.
Vice versa a too wide region of support could generate de-localized detections [121].

From this point of view, an important advantage of the covariance descriptors is
its relatively low degree of sensitivity to small translations and scale variations, i.e.
its region of support over the positive detections was demonstrated to be higher with
respect to many other descriptors (especially w.r.t. HoG). The size of the region of
support depends on the training data, and the INRIA-based detector (see Section
shows a radius of such region of approximately 15% of the window size and 20%.

Since we make no assumption on the observed scene, the size of humans is totally
unknown and the range of the searched scales is fairly wide; differently from Tuzel’s
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Figure 12.1: Scheme of the approach proposed to reduce computational load of sliding-
window object detection exploiting motion and perspective.

approach [1], that performs sliding window at 5 different scales only (increasing the
size of 20% from step to step), denoting the assumption of a prior knowledge about
the human size inside the image, we search at very different scales, employing 21 steps,
with an increase of 10% in size from step to step. At any given scale, we define a
window displacement stride (both in x and y) that is not static (typical values are from
2 to 4 pixels), but is function of the size of the window, generating smaller (bigger)
displacements for small (big) windows. Such loose conditions over the sliding window
generation have the drawback to generate a very redundant window set that becomes
critical considering that for each window a classification procedure must be issued and
that the process is fairly CPU consuming (recall the exponential mapping of Eq. .

Therefore we employ a two-fold technique that prune the sliding-window set (SW.S
in Fig. : the first fold exploits the motion history image M HI;, i.e. retaining a
number windows is proportional to the amount of motion present in the area (W in fig.
m and Section ; the second fold uses perspective constraints, i.e. removing all
the windows whose size is not compliant with the perspective model (Wth in fig.
and Section . After these procedures, the human detection algorithm is issued
over the survived windows only. The experimental results presented in Chapter [14] will
demonstrate the significant reduction of the SWS size and the further advantage of the
increase in detection precision.

12.1 Motion-based pruning

SAKBOT application (Section @ is exploited to build a background model and to seg-
ment moving objects and to remove other artifacts. Given pixel p and time ¢, the
instantaneous motion M D; (p) (MD as motion detection) is computed by thresholding
the difference with the background model. Then, to account for the accumulation of
motion in time (and, thus, considering also regions where the motion was present in
the recent past) we exploit the Motion History Image (MHI) introduced by Bobick and
Davis in [132], defined as

T it MD; (p) =1

max (0, MHI;_1 (p) — 1) otherwise (12.1)

MHT, (p) = {

where the parameter 7 represents the duration period over which the motion is inte-
grated. MHI; (p) € [0,7]: 0 means no motion in the history of the pixel, 7 means
motion in the latest frame.



12.1 Motion-based pruning

123

A straightforward approach for pruning useless windows would exploit the motion
detection M Dy, removing all the windows that contain no (or low degree of) motion.
This sharp window rejection has the drawback to prune windows in areas where the
motion is fragmented (because of background camouflage) or where there is absence of
motion just in the very last frame. Employing a more conservative approach based on
the motion history image M HI; solves the problem; however, if the 7 (see eq.
is set from moderate to high values (i.e. 5-30 seconds), and if there are objects that
move all around the image frame, the reduction of the number of windows is very
limited. As a solution to this, it is reasonable to relate the number of retained windows
in an area with the amount of motion history present in that area, by increasing the
amount of discarded windows together with the “age” of the motion recorded within
the window (i.e. windows containing “older” motion will be discarded more easily than
windows containing “fresher” motion). The precise procedure is presented in Alg.
At first, the motion ratio MR} for the window w’ at frame ¢ is computed as the ratio
of pixels with motion (M HI(p) > 0 and p € w’) with respect to its area. If the motion
ratio is too low, the window is discarded; otherwise there is a further verification, that
depends on the maximum (i.e. most recent) motion found inside the window: a random
pruning technique is performed depending on such value. As mentioned in Section
[10.2] the LogitBoost detector based on covariance features is quite insensitive to small
translations and scales, thanks to the region of support. Therefore, pruning a (limited)
number of windows around a human silhouette will not affect the overall detection
performance, since from the many windows encompassing the pedestrian, some of them
will very likely survive from the pruning of Alg. [1|and trigger a true-detection over the
human detector.

Algorithm 1 Motion-based window pruning
1: Require: Sliding-window set SW.S, Frame Iy, Motion History Image M H I}

2. Wy =0
3: for all Wind;x%vs wlZ |€ SWJ@’}}:IIO( o}
. ixe Ew'A t(p)>
& MR = el ]
5: if MR; < 0.5 then
6: prune w'
7: else
8: v=max MHI (p)
pew’
9: Sample u from uniform distribution U (ul [0, 7])
10: if u < v then
11: Wy + w'
12: else
13: w' is discarded
14: end if
15: end if

16: end for
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12.2 Perspective-based pruning

As mentioned before, the SW.S contains a very wide range of scales since we do not
make any prior assumption on the size of pedestrians in the frame. Hoiem et al. [123]
propose a statistical framework to automatically retrieve the scene perspective in order
to focus the detection tasks at the right scales. With a similar approach, we make the
following hypotheses:

1. all the people move on the same ground plane;
2. people are in standing position;

3. camera tilt is small to moderate;

4. camera roll is zero or image is rectified;

5. camera intrinsic parameters are typical of rectilinear cameras (zero skew, unit
aspect ratio, typical focal length);

6. all the observed people are assumed to have consistent physical height.

Hypothesis (2) comes with the definition of pedestrians; hypothesis (3) is satisfied
because in our context the cameras are installed with very low tilt in order to observe
wide views. Hypothesis (4) is fulfilled through initial system configuration. By employ-
ing cameras with fixed focal length and by compensating the other camera parameters
with an intrinsic calibration hypothesis (5) is satisfied too. By focusing our attention
to adult people detection we can assume without loss of generality that the difference
on people height is negligible (hypothesis (6)).

Finally, assuming for the sake of simplicity that hypothesis (1) is a-priori satisfied,
it is correct to approximate the height (in pixels) of the human silhouette with a linear
function in the image coordinates (x,y) of the point of contact with the ground plane
(confirmed also by eq. 7 in [123]). By estimating the parameters of this function, we
can further prune the sliding-window set W; by discarding all the windows whose height
significantly differs from the estimated function and obtain the set W} (see Fig. . In
case the hypothesis (1) is violated (for instance workers on scaffoldings move on multiple
parallel planes), it is still possible to perform perspective pruning by partitioning the
image in areas and accept the rougher assumption that the height (in pixels) of the
people inside each area is almost constant.

Differently from [123], that recovers the perspective using a probabilistic framework,
we use a LSQ (Least SQuare) estimator with outliers rejection based on RANSAC. Dur-
ing the training phase, the motion-based pruning (see Section and the pedestrian
detector are run over a video that must contain, among other objects, also some peo-
ple: all the windows that the human detector classify as positives are passed to a LSQ
estimator and to the RANSAC iterative method, that is capable to discard the outliers
(due to out-of-scale false detections) and retain only the windows which contribute to
the correct parameter estimation. Detailed results are provided in Chapter



Chapter 1 3

Multi-Stage Sampling with Boosting
Cascades

As we mentioned in Section [10.2] one of the advantages of the rejection cascade of
classifiers covariance is computational: given the task of pedestrian detection on real
world images and defined the set of windows to test, only a small portion of them will run
through the whole cascade; in fact, most of the patches are typically very dissimilar to
the trained pedestrian model and will be rejected at its earlier stages, reducing therefore
the overall load of detection process. We introduce the detection response R as

R(w) = ——= (13.1)

where w is a window, defined by the 3-dimensional vector (w,, wy, ws), being respectively
coordinates of the window center and window scale; we assume a constant aspect ratio
of pedestrian (width/height = 1/3) and no rotation; P is the index of the last cascade
which provides a positive classification for w and M is the total number of cascades.
Given the structure of rejection cascades, the higher the degree of response R(w) is,
the further w reached the end of the cascade, the more similar it is to the pedestrian
model (up to the extreme of R = 1, that means successful classification). The cascade
of LogitBoost classifiers with covariance descriptors rejects 80% of the negative samples
within the first % of the cascade (i.e. R(w) < 0.2 for 80% of generic negative patches).

Having defined the response of the classifier through eq. [13.1] it is now possible
to provide a representation of the region of support (see Fig. that has been
introduced in Chapter where we proposed a method to reduce the cardinality of
the SWS. Indeed, the original sliding window paradigm quantizes uniformly the state
space, incurring in a two-fold problem: large waste of detections (i.e., computational
time) over areas where pedestrians are not present and need of a redundant SW S to find
every pedestrian in the scene. In addition to our proposal, which exploits motion and
perspective, many other works use additional visual cues (depth, geometric inferences,
etc.) to reduce the SW.S [97,122,|123].

Such cues typically have a nature that is orthogonal to the appearance based nature
of the detection. What we claim in this chapter is that there is space for improvement of
efficiency within the domain of appearance; exploiting the architecture of the boosting
cascade and the shape of the region of support of covariance descriptors, we propose
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Figure 13.1: Example of the “region of support” for the cascade of LogitBoost classifiers
trained on INRIA pedestrian dataset. (a) original frame. (b) shows the normalized
response of the classifier by keeping w; fixed - at the scale corresponding to the red-shirt
man - and changing w, and w,. (c) is obtained by fixing w, at the value corresponding
to the center of the man and spanning w, and w, values, while (d) fixing w, and
spanning w, and ws.

to apply a sampling-based framework to speed up the detection process w.r.t. the
sliding window approach. Such proposal can easily co-exist with any additional (and
orthogonal) cue to further improve performances.

Our objective is to detect pedestrians as an estimation of the states given the ob-
servations, i.e. estimate the modes of the continuous density function p (X|Z), where
X = (wg,wy,ws) is the state and Z corresponds to the image. In section we
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introduce an approximation of the likelihood function, through a multi-stage sampling-
based process, that progressively improves the approximation of the likelihood. Such
procedure has the advantage to provide a global view of the landscape of the likelihood
function and, at the same time, to support efficient sample placement. The likelihood
can then be used to detect the presence of the pedestrians within the single image. In
section we deal with pedestrian detection in videos, plugging the likelihood ap-
proximation method into a Bayesian-recursive filter. We have studied this method on
the LogitBoost pedestrian classifier proposed by Tuzel et al. [1], but regardless of our
specific choice, the method can be easily applied to any classifier which is able to provide
a confidence measure over the detections.

13.1 Multi-Stage Kernel-Based Density Estimation on
Single Images

In the context of single images, we purposely avoid to consider any prior information
(such as motion, scene geometry, etc.) in order to provide a more general solution.
Consequently, the state pdf can be assumed proportional to the measurement likelihood
function, i.e. p(X|Z) x p(Z|X).

The measurement likelihood function is estimated by iteratively refining through m
stages (m fixed) the proposal function based on the observations. Algorithm shows the
complete procedure. The initial proposal distribution gy (X), from which we sample the
first set S1 made of N; samples, is a uniform distribution on the state space (see line |1|of
Alg. 2| and yellow points in the example image of Fig. . Each sample s represents
a state (wg,wy,w,) in the domain of the windows. Scattering samples according to
a uniform distribution is somehow similar to the sliding window strategy (though the
samples are not equally distributed and their locations are not deterministically defined),
but N is significantly lower than the cardinality of a typical SW.S (numeric examples
will be provided in Chapter [14). The rationale is that part of these samples will fall in
the basin of attraction of each region of support of the pedestrians in the image and will
provide an initial rough estimation of the measurement function. Being driven by the
previous measurements, at any stage ¢ we progressively refine the proposal distribution
¢; that will be used to perform new sampling. This growing confidence over the proposal
makes it possible to decrease, from stage to stage, the number of N; to sample (see Fig.
[13.2)), differently from [126], where N; is constant over stages.

The Ny samples drawn from ¢g (X) (line [5)) will be used to compute a first approx-
imation of the measurement density function p;, through a Kernel Density Estimation
(KDE) approach with Gaussian kernel, generating a mixture of N; Gaussians: for each
(4)
1

is set to

j-th component, mean, covariance and weight are defined as follows: the mean p;”’ is

G _ (@ ) @ ()
i 00 Vy,i TS, i

a covariance ¥; (line , which, at any given stage ¢, is constant for all samples. The
work in [126] proposed to determine the X for each sample as a function of its k-nearest
neighbors; this strategy yielded fairly unstable covariance estimations when applied to
our context: in fact, working with a very the low number of samples, k is to be kept
pretty low (to maintain a significance over the covariance estimation), and this makes
the estimation quite dependent on the specific randomized sample extraction. We pre-
ferred to assign an initial 3 proportional to the size of the region of support of the

set to the sample value s w >; the covariance matrix X
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Algorithm 2 Measurement Step
1: Set g0 (X) =U (X)
2: Set S =10
3: for i=1..m do
4: Draw N; samples from ¢;—; (X):

5 Si= {15 ~ qia (X), =1, Ni}
6: Assign a Gaussian kernel to each sample:
7. (J) S( 7 : Ez(']) -y,
8: Compute the measurement on each sample S(J ):
9: ll(]) = RN ( l( )) with RN € [0,1]
10: Obtain the measurement density function at step i:
11: pi(Z1X)= Y 7V ( () 20))
) #0
; )
12: where: (7) Nl'ij
TG
k=1
13: Compute the new proposal distribution:
(Z|X
14: i (X) = (1— i) g1 (X) + Oéiifpf((zﬂx))dx
15: Retain only the samples with measurement value 1:
16: S; = {Sz(']) ESZ‘R (/LE”) =1, jZl,...,NZ‘}
17: S=5US;
18: end for

19: Run variable-bandwidth meanshift (Non-Maximal-Suppression) over S. Obtain the
set of modes M

20: Prune the modes in M; that do not represent reliable detection (details in Sect.
. Obtain the new set of modes My

21: Assign a Gaussian Kernel to each modes w) € M3 and compute the final likelihood
function:

22: p(ZIX)x Y N (wE)

Vw)eMy

classifier, and decrease the 3; of the following stages: this has the effect of incrementally
narrowing the samples scattering, obtaining a more and more focused search over the
state space.

Finally, the response R of the classifier (eq. [13.1) is exploited, in a novel way, to

determine the weight 771(] ) of the j-th component. The intention is that those samples
falling close to the center of any region of support (i.e., close to the mode/peak of
the distribution) might receive higher weight with respect to the others, so that the
proposal distribution ¢;, that is partly determined by p;, will drive the sampling of
the next stage more toward portion of the state space where the classifier yielded high
responses. Conversely, sampling must not be wasted over areas with low response of the
classifier. In other words, these weights must act as attractors which guide the samples

(4)

toward the peaks. This is accomplished by connecting the weights 77" to the response

R of the pedestrian detector in the sample location ,ugj ) (line @) The exponent A; used
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Figure 13.2: Distribution of samples in the stages with m = 5 and
(2000, 1288, 829, 534, 349) = 5000 samples. Stage order is yellow, black, magenta, green
and blue. White circles represents the samples that triggered a successful pedestrian
classification.

to compute the measurement is positive and increases at every stage: at early stages,
Ai € (0;1), therefore the response of the samples is quite flattened, in order to treat
fairly equally all range of non zero responses; at later stages A; grows beyond 1, so that
only the best responses will be held in account, while the others will be nullified. This
behavior is clearly depicted in Fig. where the samples at subsequent stages (even if
less numerous) are concentrated in the peaks of the distribution (i.e. where the response
of the pedestrian detector is higher).

The Gaussian mixture of line [11] is used as a partial estimation p; (Z|X) of the
likelihood function. This estimation is linearly combined with the previous proposal
distribution ¢;_1 (X)) to obtain the new proposal distribution (line [I4)), where «; is
called adaptation rate.

The process is iterated for m stages and at the end of each stage only the samples
of S% that triggered a successful human detection (i.e. R = 1) are retained (line and
added to the final set of samples S (line[L7)). The samples retained in S are shown with
white circles in Fig. [13.2]

The non-maximal suppression is accomplished using a variable-bandwidth mean-shift
suited to work on Gaussian mixtures , that provides a mixture of Gaussians repre-
senting in a compact way the modes of the distribution generated by samples .S (line.
All those modes that do not contain a minimum number of detections (threshold 7),
or that contain less than 71/2 of strong detections (given the classification confidences
provided by each LogitBoost classifiers of the cascade, a detection is considered strong if
the minimum confidence is higher than a threshold 75) are suppressed (numerical values
are provided in Chapter . The survived modes are considered definitive pedestrian
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detections and the corresponding mixture is used as the final likelihood function p (Z|X)

(line 22).

13.2 Kernel-based Bayesian Filtering on Videos

We extend here the previous method to the context of videos, by propagating the modes
in a Bayesian-recursive filter. It is crucial to highlight that the propagation of the
conditional density among frames (observations in time) is not used here to solve data
association, i.e. we are not aiming at people tracking in a strict sense. The recursive
nature of particle filtering is used here to exploit temporal coherence of pedestrians. In
the sequential Bayesian filtering framework, the conditional density of the state variable
given the measurements is propagated through prediction and update stages as:

p(Xi|Z1:4—1) = /p(Xt|Xt1)p(Xt1|Z1:t1)dXt1 (13.2)

(X1 Z1a) = P (Zi| X4) p (Xi|Z14-1) (13.3)
I p(Z| Xy) p (Xt| Z14—1) d Xy

The priori p (X;—1|Z1.4—1) is propagated from the posteriori at the previous frame;
for the first frame only p (X¢|Zp) no prior assumptions are made and uniform distribu-
tion is used similarly to what has been previously described in the procedure for single
images (Alg. [2| line . The predicted pdf is obtained (eq. [13.2)) as the product of the
priori with the motion model and then marginalizing on X;_1. Since in complex scenes
is difficult to identify a correct motion model [133], we applied a zero-order function
with Gaussian noise of fixed covariance.

Fig. depicts the different steps of this procedure. The priori is convolved
with white noise which has the only effect of increasing its covariance (producing the
predicted pdf - Fig. [13.3(b)|). Differently from the case of single images, where ¢
is uniform, in videos, at each time ¢ (i.e. frame), o (X;) is obtained by applying a
quasi-random sampling [134] to the predicted distribution p:

qo (X)) = B-p(X¢|Z14—1) + (1 = B) - U (Xy) (13.4)

where (3 is used to decide the amount of random sampling. The random sampling is
crucial to detect new pedestrians entering the scene (Fig. . Given g, Algorithm
is used to iteratively estimate the likelihood p(Z;|X;) (Fig. [13.3(¢)). Any newly
detected likelihood mode is confirmed as a new-entry pedestrian detection, verifying
the same conditions defined in Alg. [2] line Note that the quasi-random sampling is
applied only to the proposal distribution gy (the proposal of the first stage of the multi-
stage sampling). The likelihood and the predicted are multiplied to obtain (unless a
normalization factor) the posterior pdf (see eq. .
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(g) Detections

Figure 13.3: Multi-stage sampling in the context of Bayesian recursive filtering. In (c)
the yellow dots represents the quasi-random sampling. The coloring is consistent with
the one proposed in Fig. [I3:2] The man on the upper-right corner is out of the influence
of the predicted pdf, but the uniform component of eq. allows some samples to fall
within the region of support of that person and to act as attractors for the samples in the
next stages. In (d), red dots represents successful detections, cyan dots are successful
detections with high detection confidence.
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Chapter 1 I

Experimental Results

14.1 Test Beds and Operational Conditions

The additional learning with relevance feedback (Section and the detection with
sliding-window sets pruned by means of motion (Section and perspective (Section
, are tested on a test bed made of 4 videos recorded in Construction Working Site
(CWS). Details are provided in Tab.

Video | Number of Type of
1d Frames Perspective Notes

CWS1 1740 planar Even presence of moving peds.
352x288, 3 fps and other moving objs.

CWS2 2760 planar More other moving objs.
352x288, 3 fps w.r.t moving peds.

CWS3 1740 multiple planes More moving peds.
352x288, 3 fps | (scaffoldings) w.r.t. other moving objs.

and significant ped. occlusions.

CWSs4 1000 planar same scenario as CWS1;

352x288, 3 fps used for perspective learning only

Table 14.1: Construction Working Site benchmark. By “other moving objects” we mean
typical construction working site machineries: cranes, bulldozers, trucks, etc.

The system configurations used in these tests are the following: (a) the INRIA-
based detector, a 30-cascades LogitBoost classifier, trained on the INRIA pedestrian
dataset |105], according to the method and the directions provided in [1]; (b) the first
24 cascades of the INRIA-based detector, followed by 6 cascades learned with explicit
and implicit RF training data; (c) same as the previous, but using only implicit RF
data. The explicit feeding was composed of 500 true-positive detections and 1000 false-
positive detections; the implicit feeding was composed of 6 negative background images.
In both cases, the RF data is extracted from videos recorded in the same day and at
the same camera position used in videos CWS1, CWS2 and CWS3.

The use of polar representation (Section[11.2)) and of multi-spectral image derivatives
(Section[11.3)) for covariance descriptors are tested in two different classification contexts



134 Experimental Results

of objects with circular features: head and polymer detection. In the first case, the goal
is to find the exact position of the head of pedestrians, after having located them within
an image through a pedestrian detector. Candidate head locations are searched (with a
sliding window approach) in the upper part of the bounding box identifying the person.
In this scenario, we require to record video with a high-resolution camera (1MPixel or
more): pedestrian detection is performed at low resolution, but head detection exploits
the full resolution of the camera over the detected pedestrian box. This condition
becomes mandatory when the detected pedestrians have sizes of approximately 15 to 30
pixels in height (and a third of it in width), and the head corresponds to only 20 to 50
pixels: these resolutions are too low to obtain meaningful covariance descriptors. In the
second case, the goal is to examine photomicrography image libraries and automatically
extract the images that contain polymers.

The tests are based on per-window performance, that is more suitable to measure
classifier performance, instead of per-frame performances, more suited to detection per-
formance. We defined two datasets, both for training and for testing (see Tab. ,
partially extracted from two public datasets: the INRIA pedestrian and the MicroLab
Galleryﬂ The positive set is made of patches of fixed size containing heads and polymer
bubbles respectively, placed in the patch center. The negatives set instead is made of
images containing all but heads and polymers: the negative patches are extracted from
these images with randomly generated windows with size equal to the positive patches.

Training Testing Patch Sizes
Pos. [ Neg. | Pos. [ Neg. | Pos. [ Neg.
Head Image DataSet 1162 | 2438 266 906 98x98 | 320x240, 640x480
Micrography Image DataSet || 2996 750 1360 106 50x50 640x480

Table 14.2: Head Images Dataset and Micrography Images Dataset.

# Size of # Size of # People per

Imgs Images People People Image (avg)
Tests on | Graz02 [135] 310 640x480 620 55px-410px 2.00
Images INRIA [105] 288 | 333x531-1280x960 582 80px-800px 2.02
CWS5 148 340 2.30
Tests on | CWS | CWS6 114 800x600@1fps 398 55px-350px 3.49
Videos CWS7 68 83 1.22
Caltech [2] 63 640x480 55 55px-260px 0.87

Table 14.3: Benchmark of videos used for testing the multi-stage sampling based de-
tection. Videos CWS5,CWS6,CWS7 from construction working sites are taken from
similar scenarios of Videos CWS1,CWS2,CWS3,CWS4 proposed in Tab.

Regarding the head detection, we trained six different classifiers: three with the
traditional rectangular patches (called straight solutions), which compute image deriva-
tives on gray, RGB and Lab values, exploiting respectively the eq. and three
which compute the same image derivatives but over the polar transformation (called
polar solutions). Each classifier is composed of a rejection cascade with 18 LogitBoost
classifiers. In polymer classification, since the dataset contains only gray level images,

'URL: www.microlabgallery.com
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we do not exploit any multi-spectral image derivative but only the polar transformation.

Regarding the multi-stage sampling based detection (Chapter , we performed
extensive experimentation on images and videos. In both cases, the frame size is fairly
large (rarely less than 640x480, up to 1280x960) in order to better stress on our main
advantage, i.e. the use of less samples with respect to sliding window strategy which
can be very expensive for such large images. Additionally, we are also considering a
large range of scales (typically a factor of 8 from the smallest to the biggest) since
the considered images contain people of quite diverse sizes. Finally, tests have been
carried out considering no other information than appearance (neither motion nor scene
geometry).

Experimental results are obtained on the benchmark reported in Tab. In
order to compare with the state of the art we used publicly available datasets which
also provide ground-truth annotations. In the case of images, we have used the Graz02
dataset [135] which contains more than 300 images at the fixed size of 640x480, both
in landscape and portrait layout. Moreover, we tested our approach on the well-known
INRIA pedestrian testing set [105] which contains very diverse images, both in size,
number of people and complexity. Regarding the videos, we tested our approach on a
video taken by a publicly available dataset (provided by Caltech [2]) and on 3 videos
taken from construction working sites (CWS).

The accuracy of pedestrian detection is measured at object level in terms of the
matching of the bounding box found by the detector (BBg) with the bounding box
in the ground truth (BBg). A matching is found using the measure defined in the
PASCAL object detection challenges [136] which states that the ratio between the area
of overlap of BBy with BBy and the area of merge of the two BBs must be greater
than 0.5. Moreover, multiple detections of the same ground-truthed person, as well as a
single detection matching multiple ground-truthed people, are affecting the performance
in terms of recall and precision.

Regarding our approach, most of the tests have been performed using a total num-
ber of 5000 particles, divided over m = 5 stages as follows: N; = NP - eV (=1 where
NP = 2000 represents the initial number of particles (i.e., N7), whereas  is a constant
factor (equal to 0.44 in our tests) which ensures that the number of particles diminishes
over the stages in an exponential way. A similar approach is followed also for \; and ;,
which are the exponent for the measurement (Alg. [2| line E[) and the covariance for the
Gaussian kernels, respectively. The starting values are 0.1 and diag(7,14,0.125) (ob-
tained considering the region of support, and with normalized scales) and the exponen-
tial constant are 1 and -0.66, respectively. Finally, the thresholds for the non-maximal
suppression (see Section have been set to 71 = 4 and ™ = 4.0.

14.2 Results and Evaluations

In Tab. we present a qualitative summarization of the effect of motion-based
and perspective-based pruning, where it is possible to appreciate how the two pruning
techniques improve both performance (the number of windows to analyze per frame
gets strongly reduced) and precision of the detection (since pruning basically reduces
the number of false positives coming out from the human detector). As explained in
section the use of pruning based on the instant motion detection might negatively
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Input image Motion Detection Motion history Motion history
I; MD; image MHI, M HI,+Perspective

AT

283798 425 35012 3127

Table 14.4: Qualitative evaluation of human detection, using motion-based and
perspective-based pruning. Top row, from left to right: original snapshot; instant mo-
tion detection; motion history; perspective depiction. Middle row: human detection
results, making use of the corresponding mask; from left to right: use of no mask, of
instant motion, of motion history; of motion history and perspective. Bottom row:
number of windows that survived the pruning and were fed to the human classifier.

affects the recall, and the example here gives a clear depiction of the problem: the man
close to the bulldozer is steady in the latest frame (M Dy is zero over him), but moved
in a recent past (MHI; is non zero over him); this is reflected in the corresponding
detections. The number on analyzed windows presented in the third row of Tab. [14.4]
refers to the mean computed over several frames and the order of magnitude is confirmed
all along the three videos CWS1,CWS2,CWS3: pruning based on M H I; reduces sliding
windows by approximately a factor 10, pruning on perspective by a further factor 10.

False Positives True Positives
Out of Scale | In Scale In Scale
# of Windows 110 40 310
Consensus Set 0 20 270
Error (Std. Dev.) 21.57 8.7 1.5

Table 14.5: Results of LSQ and RANSAC for perspective learning over video CWS4.
The last row refers to the standard deviation of the differences between the estimated
and the actual heights of the detection windows.

Regarding the perspective-based pruning, Tab. reports the accuracy of the
RANSAC-based method during the perspective-learning phase (Section trained
using video CWS4. The first row reports the number of windows that successfully
passed the human classifier and that were used to feed the perspective learner; please
notice that some of the false positive windows were showing a very similar scale to what
a human would have shown in that same position (column “in scale” false positives,
Tab. . The consensus set provided by the RANSAC, that is then used by the LSQ
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to estimate the model parameters, excludes all the false detections that are out of scale;
this fact, together with the standard deviation of the error (low for in-scale detections,
much higher for out-of-scale detections) gives proof that a linear model for perspective
estimation is correct and it can be successfully learned by means of the classification
output only, avoiding any camera calibration. Fig. depicts the same experimental

data in graphic manner.
(a) (b)

Figure 14.1: (a) pedestrian detections passed to the perspective learner; they are sepa-
rated in three classes: (blue) true positives, that are in scale by definition; (green) false
positives in scale; (red) false positives out of scale. (b) portion of the detections that is
included in the consensus set obtained as a result of the perspective learnt with LSQ
and RANSAC: out of scale false positives are completely eliminated.

Precision (%) Recall (%)

Video 1 Video 2 Video 3 Video 1 Video 2 Video 3

B INRIA-based detector, w/out perspective m Detector with explicit and implicit R.F., w/out perspective
M INRIA-based detector, with perspesctive W Detector with explicit and implicit R.F., with perspective
W Detector with implicit R.F,, with perspective

Figure 14.2: Precision and recall on pedestrian detection comparing INRIA-based de-

tector with the relevance feedback additional learning and the perspective estimation
on videos CSW1,CSW2,CSW3.

The results of the measurements of human detection performance on the three videos
are shown in Fig. [T4.2] that depicts the precision and the recall of the system with sev-
eral setups: these two metrics were calculated measuring true/false positives and false
negatives pedestrian detection. The use of perspective-based pruning reduces the num-
ber of false detections, therefore improving the precision. Please consider that in video
3 the humans are moving on scaffoldings, therefore the hypothesis (1) of section m
is not satisfied and we model the perspective not as a function of the image coordi-
nates but as an automatically estimated constant: regardless of the roughness of the
approach, the precision improves significantly (+14%). The perspective pruning could



138 Experimental Results

rarely cause the removal of true-detection windows also: it happens when the window
to be detected is slightly out of proportion and falls out of the range admitted by the
perspective: this explains the minimal decrease of recall (video CSW1, first two bins of
the recall histogram of Fig. .

The additional learning with RF gives a strong improvement over precision: when
using both explicit and implicit RF data, the detection gains approximately +35% in
video CSW1, +60% in video CSW2, +23% in video CSW3 w.r.t. the INRIA-based
detector. Notice that the stronger is the presence of moving (or recently moved) objects
different from humans in the scene (from highest to lowest: video CSW2,CSW1,CSW3),
the higher is the gain in precision thanks to additional RF learning: this can be explained
because, as we mentioned in Section [I1.1] the RF cascades are placed at the final stages
of a rejection cascade process and they will improve the performance over (the removal
of) false-positives and not over (the inclusion) of false-negatives. For this same reason,
our approach does not affect the recall, that remains basically the same of the INRIA-
based detector. Only in video CSW3 there is a slight decrease of recall, due to the fact
that the implicit feeding trained the additional cascades in a very strong way over the
scaffolding, and in such video the humans are often integrated into or partially hidden
by the scaffoldings.

Regarding the implicit learning performance, the additional learning based on im-
plicit feeding only, increases the precision, even if with a lower degree w.r.t. the ad-
ditional learning with both explicit and implicit feeding (experiments were performed
on video CWS1 only). On the opposite there is a slight negative effect on recall: as

| C— il ==y Sz
(d) INRIA-based detector, with (e) Detector with impl only RF, (f) Detector with expl+impl RF,
perspective pruning with perspective pruning with persperspective pruning

Figure 14.3: Example of human detection in video CWS3 (a,b,c) and in video CWS1
(d,e,f). The blue shadow highlights the pixels of the image where M HI; > 0.
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explained in section the additional cascades learnt with implicit RF cannot count
on the positive samples taken from the construction working site, that would help in
shaping the positive-detection space.

Fig. provides a visual outcome of the detections over video CSW3 and CSW1.
Sub-figures [14:3}a,b,c depict the advantage of perspective-pruning first, and of false-
positive removal thanks to the RF cascades then. Sub-figures [14.3}d,e,f show the be-
havior of the RF cascades with respect to the INRIA-based detector: the implicit RF
cascades (Fig. e) remove the false positives together with a true-positive; the ex-
plicit and implicit RF cascades instead (fig. f) are able to remove false positives
without affecting the true positives.

Regarding the classification of circular features by means of polar transformation
and multi-spectral derivatives, Fig. plots the results of the classifiers applied over
the Head Images DataSet. Regardless of the chosen image derivative, the last cascades
of the polar classifiers always yield better results w.r.t. the straight classifiers. Moreover,
the proposed method generates lighter classifiers that will benefit the detection process
with a lower computational load (on average, over the three color spaces, polar classifiers
use 23% less weak classifiers; see Fig. [14.5)). The use of color brings further increase
in performance: overall best performances are obtained with the polar classifier using
Lab image derivatives, that has a miss rate (MR) of 4.5% (w.r.t. 7.5% of the straight
classifier over gray values), a False Positives Per Window (FPPW) of 0.037% (w.r.t.
0.135%) and 33.5% less weak classifiers.

\
—&—RGB - polar - @~ RGB - straight
LAB - polar LAB - straight
O GRAY - polar O~ GRAY - straight
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Figure 14.4: Miss rate versus false positives per window on the Head Image Dataset.
Each marker represents the performance up to a cascade level. The markers at the
bottom-right corner represent the results using up to 5 cascade; adding more cascades,
the markers move toward the upper-left corner, up to the 18" cascade. The more
cascades are introduced, the lower the FPPW, the higher the miss rate.
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Figure 14.5: Number of weak classifiers per cascade for the 6 classifiers: (a) gray
(straight/polar), (b) RGB (straight/polar), (c) Lab (straight/polar).

Tab. [14.6] shows the MR of straight and polar classifiers vs FPPW on the Microg-
raphy Images DataSet. On average the miss rate of the polar classifier is 2 order of
magnitude lower than the straight classifier. This strong advantage in performance is
due to the clear circular shape of the polymer bubbles that strongly benefits from the
polar representation. Fig. shows some visual examples of detection of heads in
complex scenarios and of polymer bubbles in the photomicrography dataset.

Regarding multi-stage sampling based detection, the tests on the two single image
datasets (Graz02 and INRIA) are made in a slightly different way. The test on Graz02
aims at demonstrating the advantage of our method with respect to a sliding window
strategy. Therefore, we compared the former with the latter at different number of
windows. Specifically, the scale stride is always set to 1.2, while the number of windows

Miss Rate 0> | 10° | 10"
FPPW

Straight 1.32-1077 [ 29.12-1077 | 33.68-102

Polar 0.05-107% | 0.15-107% | 0.29-1077

Table 14.6: Results on the Micrography Images Dataset. FPPW at fixed miss rate on
gray values in comparison between straight and polar classifiers.
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Figure 14.6: Examples of correct head detection in complex scenes (a) and (b) and
polymer bubbles detection: (c) detection over polymer image (some missed detections
are present); (d) detection over non-polymeric image (just one false positive).

has been tested to 5000, 10000, 20000 and 50000 (which respectively generate a window
displacement stride of 15.6%, 10.9%, 8.2% and 5% of the window widths and heights).
The non-maximal suppression is performed with mean shift and just for this test 7 = 2.
Tab. shows the results achieved in terms of False Positives Per Image (FPPI)
and MR as suggested in . Please note that our approach has been indicated as
MSBoost and it is capable to achieve approx the same FPPI of sliding window with
10000 windows (twice as many), and as a good miss rate as the sliding window with
20000 windows (four times as many).

(a) (b)

‘ Graz02 DataSet H FPPI ‘ MR ‘ ‘ Video CWS5 H FPPI ‘ MR ‘
SW 5000 wnd 0.39 0.76 Non-rec. 2500 p. 0.29 0.34
SW 10000 wnd 0.66 0.57 Rec. 5000 p. 0.56 0.13
SW 20000 wnd 1.08 0.46 Rec. 2500 p. 0.45 0.14
SW 50000 wnd 1.66 0.37 Rec. 1250 p. 0.30 0.29
MSBoost 5000 p. 0.74 0.43

(c)
\ Other Videos | FPPI | MR |
Video CWS5 (5000 p.) || 056 | 0.13
CWS | Video CWS6 (5000 p.) 0.98 | 0.55
Video CWS7 (5000 p.) || 0.42 | 0.78
Caltech video (15000 p.) 1.35 | 0.58

Table 14.7: Summary of results of multi-stage sampling based detection.

The second test (on INRIA dataset), instead, aims at comparing our approach with
existing methods, thanks to the tool provided in . Being unknown the number of
windows used in their tests, we are unable to provide a fair comparison. Therefore,
in Fig. we report the results obtained with MSBoost employing a total number
of 15000 particles, which are (probably) much less than those used in the compared
algorithms. It is worth noting that we set our parameters in order to have no more than
one FPPIL.

Also the experiments on videos have been divided in two types of tests. Firstly, we
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Figure 14.7: Results on INRIA dataset. Number in brackets represent the MR when
FPPI=1. The plots are automatically generated by the tool described in . Please
refer to that paper for the other quoted methods.

aim at validating the usefulness of the Bayesian-recursive approach on video CSW5.
Therefore, we compare the FPPI and MR achieved by using a non-recursive approach
(Section with 2500 particles with the Bayesian-recursive (Section with vary-
ing number of particles (5000, 2500 and 1250). From Tab. it is evident that the
Bayesian recursive approach achieves with half of the particles the same performance
(even slightly better) than the non-recursive approach.

Then, to further validate our approach we tested on two other videos from the CWS
dataset which contain several heavy occlusions of the pedestrians (summary in Tab.
. Additionally, we briefly tested our method on a video taken from a public
dataset (Caltech ) This dataset is very complete and challenging: the frames are
heavily compressed, which makes our approach, based on covariance of image derivatives
quite unreliable. Nevertheless, preliminary results on this dataset (which we are eager
to test further) are rather good.

Regarding the time complexity of our approach, on average it takes about 1 second
to perform 5000 detections using a C+-+ implementation on a dual-core off-the-shelf
PC, also by exploiting the intrinsic parallelization of the algorithm. The complete
approach can process about 0.75 frames per second (fps) with 5000 particles, which can
be proportionally increased by reducing the number of particles (e.g., it becomes about
3 fps with 1250 particles which give good results on video CSW5).
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Chapter 1 5

Conclusions

The thesis describes the research efforts spent on three topics that are tightly related to
mobile video surveillance, namely video streaming, object tracking and object detection
(specifically modeled for pedestrians): each of them corresponds to a thesis part. Our
research has been very focused to identify the issues that mobile surveillance contexts
arise and to search and design tailored solutions. Each thesis part encompass thorough
reviews of state of the art literature, detailed description of the proposed methods and
eventually exhaustive experimental results; in order to provide fair evaluations, wherever
possible, we have compared the proposed methods by means of repeatable procedures,
exploiting, as term of comparison, either well-known systems (from commercial or re-
search applications) or public and annotated video datasets.

In part [l we report the efforts for building a complete streaming system for mobile
video surveillance called MOSES. The two sides of such system, specifically MOVIE
(Mobile Video Encoder) and MoVIDE (Mobile Video Decoder), are implemented with
suitable optimization of open source modules to obtain efficient video streaming over
GPRS/EDGE-GPRS networks. Measurements of image quality, video latency, frame
loss and video fluidity on recorded videos are collected over MOSES and other three
well-known solution (i.e. Windows Media, Real Media and VL.C) and then a thorough
comparative evaluation is provided. A part from these off-line tests, MOSES has been
tested in challenging real-time live-video scenarios. Our extensive set of experiments
demonstrates the effectiveness of the proposed solution. Specifically, we can draw the
following brief conclusions:

1. for computer-based video surveillance, where low latency is crucial and fluidity is
unnecessary, the MOSES system is to be configured with the adaptive playback
control disabled. In these conditions, the latency introduced in our system is much
lower than in all the compared solutions;

2. for human-based video surveillance, the adaptive frame rate control dramatically
improves fluidity, at the cost of a slight raise of latency, which still remains much
lower than in the compared solutions;

3. for the trade-off quality vs compression bitrate, in terms of both PSNR and frame
losses, the proposed system outperforms the others.
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In part [l after having connected MOSES to a motion detection and tracking sys-
tem (SAKBOT), we measure the performance degradation of the video analysis due to
video compression and streaming only; we tackle here the specific case of mobile video
surveillance where the source modules are made of a mobile and minimalist hardware
configuration able to grab video, compress it and eventually stream it over the network;
in such conditions the video analysis is performed remotely. We evaluate pixel-level seg-
mentation and object-level tracking obtained on compressed videos w.r.t. their original
uncompressed version, demonstrating that it is possible to perform successful fixed-
camera object tracking on highly compressed video, up to a minimum of 5 Kbps in
indoor scenarios and 20 Kbps in outdoor ones. These bandwidths are supported by
GPRS or Tetra radio-mobile networks.

We then envision a different video surveillance scenario, where the source module
is moving with totally unconstrained motion. In this case, we propose a joint feature-
structure approach for object tracking, that increases robustness in presence of free
camera motion, varying focal length, scene cuts, severe occlusions and distractors. The
proposed coherence measure used for weighting the association graph is also demon-
strated to be a valid metric for the reliability of the tracking, allowing it to be suspended
in case the object is not found in the scene. Moreover, the exclusion of low-coherence
nodes from the extracted dominant set allows to reject false positive detections, often
due to distractors. It is worth noting that the use of color features presented in this
work is not a limitation, since the framework is flexible and open to be extended to
different types of features. Regarding the graph matching step, other search heuristics
can be plugged into the framework in substitution of dominant sets. It should be noted
that the current implementation of this heuristic does not fit a real-time tracking as
the processing time for a single frame can span from one to several seconds, whereas
discrete matching techniques could be much faster. We propose a set of experimental re-
sults that evaluate the proposed tracking algorithm on non-compressed recorded videos,
envisioning a monolithic-moving surveillance system. Nevertheless, given the reported
performances of MOSES on bitrate compression typical of UMTS or HSPA bandwidths,
it is plausible to deploy this tracking algorithm in a moving-distributed system.

In part we tackle appearance based methods for mobile video surveillance: in-
deed appearance features are very suitable for mobile scenarios of video analysis since
they are not strongly dependent on the motion status of the originating object (object
tracking is dramatically more dependent on motion conditions). In the specific, we
propose to modify a state of the art pedestrian classifier based on boosting classifiers
and covariance descriptors using a relevance feedback approach to (semi) automatically
enrich the training data: this allows to re-train the last stages of the boosting cascade,
increasing the accuracy of the system on the false positive detections that are generated
by the visual clutter of the observed scene; we then propose to use polar image trans-
formations and multi-spectral images for obtaining a modified version of the classifier
more suited to the detection of circular features.

Since the classification step is fairly CPU-consuming because of the inverse of the
exponential mapping, we propose two methods to reduce the load of the detection:
at first we tackle the reduction of cardinality of the windows in the sliding window
approach, by means of motion and perspective. Regarding the first, we employ motion
history images, purposely avoiding to count on precise motion segmentation. For the
second, we exploit the response of the pedestrian classifier to learn the perspective of
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the scene in a totally autonomous way. Experimental results prove the efficacy of the
proposed approach.

Eventually, we introduce a novel method suitable for both images and videos, to
avoid the brute force strategy of sliding window paradigm; the proposed method works
within the domain of appearance used by the classifier itself, exploiting the response
of the boosting cascade to drive an efficient estimation of the measurement function;
multi-stage sampling based strategy is used. The derived measurement function can be
plugged in a kernel-based Bayesian filtering to exploit temporal coherence of pedestrian
in videos. Experimental results show a gain in computational load maintaining same
accuracy of sliding window approach. It is our intention to test our approach with larger
public datasets to further validate the promising results described in this thesis.
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Appendix

Video Security In Construction Working
Sites

The present chapter describes the prototype for the automatic detection of workers in
construction working sites that do not wear protective helmets. The prototype, partially
funded by Bridge 129 S.p.A, was designed and developed between October 2008 and
October 2009. The work passed through different stages, namely: the study and review
of construction working site scenarios (Section , the definition of a prototype (Sec-
tion , the collection of video and images datasets and eventually the evaluation of

the prototype (Section [A.3).

A.1 The Construction Working Site Scenarios

The term construction working sites (CWS) include a very wide range of different sce-
narios that likewise generate a very wide range of visual conditions. There are infras-
tructure CWS, new building CWS, building renovation CWS, night CWS, underground
CWS, etc. Each scenario can be extremely challenging for automatic video analysis for
very different reasons. Instead of tackling the problem from a very broad perspective,
we have decided to focus on a specific type of construction sites, i.e. new building
constructions, and to dissect, with the assistance of construction engineers, the several
phases that it passes through; this precise analysis has provided the solid support to
tailor the prototype on a well defined set of requirements and constraints.
The new building CWS basically passes through three macro stages:

1. preliminary stage: the CWS is at the very beginning and it is mainly repre-
sented by an open space, where preliminary works are performed (measurements
of ground, material stacking, etc.) or the initial construction frameworks are built.
There is very limited presence of vertical structures of any kind, typically just
outer walls of the building, scaffoldings and material cages on the outer perime-
ter. At the very beginning of this stage the CWS gets surrounded by a perimetric
border (either wire, fence or just a marker). There is intense machinery activity
(e.g. cranes, bulldozers, trucks, etc.) that takes place all over the CSW; on the

Publications related to Appendix ; see the list of author’s publications, page m
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opposite there is a low degree of presence of lone workers (they typically work
inside or on the side of machineries). The motion is mainly planar, on the ground
plane. This CWS stage is depicted in Fig. |A.1(a)lA.1(b)IA.1(c)l Video analysis is
challenged by the massive and chaotic motion of machineries or induced by them
(e.g. smoke, debris, cranes moving big pale of materials, etc.), and this condition
typically brings to failure object tracking algorithms.

2. main building construction stage: the CWS enters in its core building activity,
that takes place inside the outer walls, and it transitions from being an open
space to a well-defined building with indoor spaces. At this time the machineries
are typically left out of the building and the workers are the main actors; their
motion is not constrained to the ground plane anymore, since scaffoldings and flat
surfaces are present at several levels of the construction. This stage is depicted in
Fig. |A.1(d)JA.1(e): the degree of motion is reduced w.r.t. the preliminary stage.
Now the real challenge is due to severe occlusions. Furthermore, the cameras have
to be repositioned from time to time since new pieces of construction could cover
their field of view; for this reason video analysis cannot rely on static geometrical
models.

3. inner works construction stage: the building has reached its final structure and the
main construction works are finished. This is the time for details and finishings
(e.g. paintings, electrical and hydraulic works, etc.), that take place either on
external scaffoldings or in indoor environments. The perimetric border is now
removed and there is a very reduced number of machineries around. This phase
is depicted in Fig. The video analysis in this stage is either typical indoor
video surveillance (the challenge could be the lack of lightning) or outdoor, where
the workers are partially occluded by scaffoldings.

Given this introduction, it is straightforward to observe that the CWS scenario is a
typical case study for mobile video surveillance. In the specific, we designed a prototype
equipped with mobile and embedded source modules, to facilitate repositioning, and
with radio-mobile UMTS network communication, to reduce as much as possible the
quantity of wirings. These conditions draw the outline of a mobile-distributed system,
where the video analytics is to be performed remotely in case of limited size of the
front-end devices.

A.2 Prototype description

Having realized that video surveillance based on motion segmentation and object track-
ing cannot provide reliable results in the CWS scenario, we have designed an application
(scheme in Fig. that exploits appearance cues only.

The cameras (either fixed or PTZ cameras) are equipped with high resolution CCDs
(i.e. 2 MPixels, 1600x1200), and the video is streamed to the remote processing unit
through MOSEs . As we will see, the processing frame rate is fairly low, therefore
the video streaming is configured to dispatch a slow sequence of high-resolution images
and does not saturate the radio-mobile network. Upon video decoding, a sub-sampled
version of the video (800x600 or less, depending on the scene view) is provided to the
pedestrian detector. This module is based on the covariance descriptor classifier based
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Figure A.1: Examples of the construction working site in its preliminary stage (a,b,c),
in its main building stage (d,e) and during the inner works stage (e)

on LogitBoost , with a configuration similar to the INRIA-based detector (Section
10.2). The last 6 stages of the rejection cascade are removed and re-trained every
night with the relevance feedback additional learning (Section , exploiting the
implicit feeding on a sub-set of background images detected the day before. When
user assessment is available, it is possible to recompute the additional cascades using
explicit feeding also.

The pedestrian detection is performed with the multi-stage sampling strategy (Sec-
tion . Given the reduced processing frame rate, we do not exploit the recursive
Bayesian filtering, but at each detection step we perform sampling of the first sample
set from a uniform proposal distribution (i.e. the method proposed for the detection
on single images, Section . In case the camera operates in motion, the uniform
distribution spans over the three dimensions of the window state space, namely (z,y)
coordinates and scale; conversely, if the camera is fixed, it is possible to exploit motion
and perspective (Section in order to perform sampling over a portion of the state
space. This is equivalent to use a non-uniform proposal pdf that takes into account
motion and perspective: perspective gives a contribution that remains static until it
is recomputed, while motion contributions changes frame by frame. The use of non-
uniform proposal distribution further reduce the computational load of the detection
step. Fig. depicts a few examples of pedestrian detection.

The head detector module receives full-resolution frames from MOVIDE and a set of
bounding boxes from the pedestrian detector; using the covariance descriptor enhanced
for circular features (Section[I1.2)) and exploiting the Lab color space derivatives (Section
, this module performs the precise detection of the head on each full-resolution
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Figure A.2: Schema of the prototype for the automatic detection of workers in con-
struction working sites that do not wear protective helmets.

Figure A.3: Pedestrians detected in CSW in two different scenarios: (a) preliminary
phase of CSW; (b) main building phase of CSW.

pedestrian patch: specifically the module runs a multi-stage sampling-based detection
on the upper part of the body and in case the detector finds no potential heads (e.g. in
case of false positive from the pedestrian detection) or more than one (e.g. in case of
circular distractors), the patch is discarded. Otherwise the head detection is considered
reliable and passed to the helmet recognition.

The main peculiarity that separates bare heads (or heads with headgears, like hats,
caps, bandanas, etc.) from heads with helmets is the color. Indeed, security or protective
helmets purposely have very bright and vivid colors that make them very visible. We
trained a binary tree classifier on the Lab color space. The color is computed as the
average on a small patch in the upper part of the detected head; Fig. |A.4(a)| shows the
scattering of the training dataset for the helmet recognition over the Lab color opponent
space; a and b are the most clearly discriminating features (Fig. , but white
helmets can be distinguished from heads only using luminance (Fig. A.4(d))).
However, if the prototype is deployed in scenarios where white helmets are not used,
the binary tree classifier should be retrained using the two chromatic components only,
since avoiding luminance makes the classifier more robust to lightning changes. We
tested also other color spaces (RGB and HSV), verifying that Lab best separates the
two classes.
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Figure A.4: Scattering of the color of the 527 patches (399 heads and 128 helmets) on
the Lab color space; (a) 3d-view; (b) 2d-view of ab; (¢) 2d-view of La; (¢) 2d-view of
Lb; black dots = bare heads or heads with headgears; blue,red,yellow dots = heads with
helmet of corresponding color; magenta = white helmets.

A set of PDAs are connected via UMTS to the remote processing unit and receive
real-time warnings on workers without protective helmets. Moreover they can down
stream live VGA or QVGA video directly from the cameras, using MOSES architecture.

A.3 DataSets and Performance Evaluation

The pedestrian classifier is made of a 26-stage rejection cascade trained on images taken
from two datasets: the INRIA pedestrian training dataset and the CWS dataset, that
is a pedestrian dataset that we generated using only images taken from construction
working site scenarios: the training set is made of 1343 positive patches (i.e. 96x160
patches containing a centered worker of 64x128) and 639 person free images; the testing
dataset is made of 323 positive patches and 173 person free images. We also generated a
head dataset composed of 534 positive patches (i.e. 98x98 patches containing a centered
head of 32x32) for training and 134 for testing. For the negative images we use the CSW
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dataset. The training dataset for the helmet recognition is made of 527 patches: 399
heads and 128 helmets.

We recorded approximately 20 hours of videos with 2 MPixel camera (Basler BIP-
1600c) in a wide construction working site along the three stages of its development.
The prototype has been configured with very conservative parameters over the two
classifiers (pedestrian and head), in order to reduce as much as possible the number of
false detections even at the cost of higher miss rates and heavier computational load.

The pedestrian detector has a recall of 56.1% and a precision of 95.2%. The head
detector has a recall of 87% and a precision of 95.7% (see Fig. [A.5]). The helmet recog-
nition misclassify approximately 10% of helmets with heads and vice versa. Removing
the white helmets, misclassification drops to approximately 3%. Examples of the final
results are provided in Fig. The prototype runs on a Quad-Core processor with
4GB RAM. The processing frame rate is approximately from 3 to 20 frames per minute,
depending on the number of samples used in the detectors, on the use of priors, on the
complexity of the visual scene and on the quantity of motion. It performs pedestrian
detection on a 800x600 frame in approx. 7 seconds and each head detection in approx.
5 seconds. Given this working performances, the prototype is to be configured a sample
checking tool and not as an exhaustive or pervasive detector.

()

Figure A.5: Examples of head detection using the classifier with polar transformation
and multi-spectral derivatives. The blue box represent the head position blindly esti-
mated in a fixed position of the pedestrian detection bounding box; the red box shows
the head position obtained with the head detector.
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(w) ()

Figure A.6: Examples of final results (only upper body is shown): (a-j) correct detec-
tion and recognition of workers with helmet; (k-t) correct detection and recognition of
workers with no helmet; (u-w) wrong helmet recognition (u,v are recognized as helmets,
w is recognized as head); (x-y) wrong pedestrian detection that passes also through the
head detection.
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Appendix

Open Source Video Encoding, Streaming
and Decoding

In Chapter 4] we introduced the MOSES streaming system, which is divided in two
applications: the encoding part, called MOVIE (Mobile Video Encoder) and the decoding
part called MOVIDE (Mobile Video Decoder, see logos in Fig. . We propose here a
brief instruction manual for both applications that can be downloaded from the author’s

home pagd}
(a) (b)

Figure B.1: Movie and Movide logos.

B.1 MOVIE, Mobile Video Encoder

MOoVIE is devoted to video grabbing, compression, streaming and file storage, plus minor
video operations. We review here the configuration details that can be used in each of
these four functionalities. Refer to Fig.

Video grabbing: the video grabbing functions can be controlled from the group Grab
in the main window. The program can grab video from four different sources:

e USB WebCams (radio button Camera): the webcam driver must be properly
installed in the system. Using the button SetUp, it is possible to configure the
video parameters of the camera with the control panel provided by the vendor. In

Publications related to Appendix E ,E,\ see the list of author’s publications, page m
Yimagelab.ing.unimore.it /imagelab/~ gualdi
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Figure B.2: Movie main window.

case more than one usb camera is plugged in the system, it is possible to choose
which one to use.

e Memory Mapped Files (radio button Mem Md): memory mapped files (MMF's)
are the easiest interface offered by MOSES for external applications to use its
video encoding, streaming and decoding. In the side text box, type the name of
the memory file to read video from. For details see Section

e FFMpeg Library (radio button FFmpeg): MOVIE is linked to FFM-
peg and therefore can read any video from file or network stream
that is supported by that library. In the text box it is possible
to specify the file name (with absolute path), or the network URL,
that can also contain authentication data (e.g.  rtsp://myIP/mpeg4 or
http://username:password@myIP/cgi-bin/mjpeg?buffer=0). It is also possi-
ble to force FFMpeg to use a specific video format with the -f option that must
be placed before the URL (e.g. -f mjpeg http://myIP/mjpeg).

e AVI or MPEG files (radio button File): this feature is supported by OpenCV file
reading functions and uses the codecs installed in the Windows operating system.

Video compression: the video compression parameters can be controlled from the
group Encode in the main window. It is possible to define a desired maximum bit rate,
implicitly requiring Constant Bit Rate (CBR) coding; moreover four different encoding
profiles can be used:
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Figure B.3: Movie x264 configuration panel.

e the Default profile performs encoding with the default options offered by the
encoding library x264.

e the Fast profile corresponds to the baseline profile introduced in Chapter it
minimizes the CPU load at the cost of low video quality compression.

e the High profile is the opposite of baseline, i.e. highest video quality compression
at the cost of higher CPU burden.

e the Custom profile let’s the user freely choose most of the x264 encoding parame-
ters with the panel control shown in Fig. It is possible to configure quantiza-
tion control instead of bit rate control, motion estimation, P and B frames, filters,
etc. Please refer to H.264 standard and X.264 web site El for more details.

Video streaming and storage: the grabbed video can be relayed to MOVIDE or to
other systems in three different ways:

e Enabling the check box Encode with h264 it is possible to encode the grabbed
video with x264 and dispatch it via UDP streaming to a specific IP address (and
port); the details of this network streaming are reported in Section

e Enabling the check box Save to file it is possible to save the grabbed video to file
system. AVI or H264 file extensions can be chosen: in the first case OpenCV file

*URL: www.videolan.org/developers/x264.html
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writing functions are exploited, using one of the codec installed in the Windows
operating system; in the second case the X.264 encoder is silently enabled and a
plain (i.e. free of any encapsulation) video stream is written to file system.

e Enabling the check box MMF Stream it is possible to forward the grabbed video
in its RGB uncompressed version on a MMF': provide its name on the side text
box. For details see Section [B.3l

Other operations and informative bozes: regardless of the chosen video source, check
box Video Source enables video browsing; check box Binary Counter enables the draw-
ing of the binary coded frame numbers on each frame (see Section for details); it is
also possible to define the number and the size of the binary digits to print. Eventu-
ally, check box BGR2RGB changes the RGB/BGR coding and check box Vertical Flip
performs vertical image flip; it is possible to change the grabbing frame rate through
check box and text box Frame Rate: the value 0 means that the system processes at
the highest possible frame rate. The system reports the grabbing frame rate (i.e. live
update), frame size and frame number in the three respective boxes.

B.2 MOVIDE, Mobile Video Decoder

MOoVIDE is devoted to H.264 video down streaming, file reading and optimized playback,
plus minor video operations. Refer to Fig.

H.26/4 video down streaming and file reading: it is possible to down stream video from
a UDP port (radio button UDP) or to read from a file (radio button File): any H.264
compliant video stream is supported, provided the fact that no encapsulation method is
added to the streamed data. In the group Stream there are two more options, that are
used for exporting the video stream: specifically it is possible to save the video stream
to file (check box Save To File), typically used when the stream is downloaded from the
network and needs to be recorded, or to forward it to other applications using MMF
(check box Save To MMF'). For details see Section

Optimized playback: the options for controlling the playback frame rate are inside
the group FPS PlayBack Control; the theory behind them are thoroughly reported in
Section It is possible to enable or disable the decoder-display coupling (check box
Avoid Frame Overwrite), defining also the maximum waiting time (in milliseconds) for
enabling eventual overwriting (text box Maz Sleep). The adaptive playback frame rate
is controlled through the three radio buttons: Disabled plays the video at the maximum
possible speed; Static Ctrl configures a static frame rate (traditional playback); Dynamic
Ctrl enables the adaptive play back frame rate: the system will smoothly adapt the
frame rate in order to reach the target buffer occupancy defined with the slide bar
Target Buffer Fill; the slide bar Admitted Range defines its tolerated range; in other
words these two values define Ty, and T of Eq. [£.1] Using the button Force Fps it is
possible to force an instantaneous change of playback frame rate.

Other operations and informative boxes: it is possible to change RGB/BGR coding
(check box BGR2RGB) and to perform vertical image flip (check box Vertical Flip).
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Figure B.4: Movide main window.

The text box Nominal Frame Rate reports the video frame rate reported inside the
H.264 stream, while the Playback FPS is the real actual playback frame rate. The
two boxes Buffer Fill, relative to initial size and Buffer Fill, absolute report the actual
buffer occupancy in percentage: the first w.r.t. the size of the buffer at the beginning
of the streaming session, the second w.r.t. the actual buffer size.

B.3 Video Sharing through Memory Mapped Files

A memory mapped file (MMF) is a segment of virtual memory which has been assigned
a direct byte-for-byte correlation with a file; it is possible in this way to perform very
efficient inter process communication, with performance comparable to shared memory
among threads. From the author’s web site it is possible to download the DLL that
creates a MMF mono directional communication channel for sharing uncompressed RGB
frames. The DLL supports a front-end (video provider) and a back-end (video receiver).
The application that provides the video creates the MMF with a specific name, writes
a sequence of frames and eventually closes its side of the MMF. The video receiver
instead, opens the MMF (it has to be previously created by the provider), reads frames
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from it, and eventually closes its own side of the MMF. Upon receiving a frame, the
application has the possibility to know from the DLL if the frame is new or has been
downloaded from MMF already.



Appendix

Proofs for Dominant Set Framework

Definition 1 A structural model of an object is a connected graph G,, = (P, S) where
P is the set of distinct parts we want to use to represent the object and S C P x P are
their structural relations, where (pq,pp) € S if and only if p, and p, are joined in the
object.

Definition 2 Given a structural model Gy, = (P,S), a set of features clusters C as-
signed to |P| classes by a surjective labelling function | : C — P and their attributes
A, we define the labeled graph as the |P|-partite graph G = (C, E, A,1) where C' is the
vertez set, E = {(u,v) € C x C|(l(u),l(v)) € S} the edge set, A the vertex attributes
and | the vertex labelling function.

Definition 3 Given labeled graphs G1 = (C1, E1,A1,l1) and G = (Ca, Ea, As,12) a
labeled isomorphism between them is a relation M C Cy x Cy such that for each
(u1,u2), (v1,v2) € M, with uy,v1 € C1 and uz, vy € Co, the following properties hold:

ll(ul) = l2(u2) A ll(Ul) = lg(Ug) (Cl)

and
U1 = V1 < U2 = V2 (CQ)

Definition 4 Given the set of edges matches of a labeled isomorphism M :
e(M) = {[(u1,v1) , (uz,v2)] € By X Ea|(u1,u2) € M A (v1,v2) € M}

and let w : (E1 X F2) x (E1 X Fa) — R be a measure of coherence between pairs of
edges matches, then the total weight of M is defined as:

QM) = > > wab). (C.3)

ace(M) bee(M)\{a}

Definition 5 Given labeled graphs G1 = (Cy, E1, A1,1l1) and Go = (Ca, Ea, A, l2) and
a function w : (E1 x Es) x (Ey x Ey) — R that measures the coherence between pairs
of edge associations, we define an association graph between them as an edge weighted

Publications related to Appendix ; see the list of author’s publications, page
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graph Ga = (Va, Ea,w) where Va = Ey X Es, Ea C Va x Va and, Yuy, v, w1,z € C}
and ug, Vo, wa, 29 € Co, the element:

{[(ur,v1), (ug, v2)], [(w1, 21) , (w2, 22)]}

belongs to Ea if and only if the following three conditions hold:

l1 (’U,l) = lQ(’U,Q) A (’1)1) = ZQ(’UQ) A ll(wl) = lg(wg) A ll(zl) = ZQ(ZQ),
U] = W1 < Uy = W, (C5

V1 = 21 < Vg = 29 C.6

Definition 6 In order to obtain a relation between vertices in Vi and Vo we define a
natural map v : P(Vy) — P(Vi x V) as:

U(X) = {(Ul,'LLQ) eV x V2| [(ul,vl) , (UQ,UQ)] e XV [(Ul,ul) s (UQ,UQ)] S X}

Lemma 3 Given labeled graphs G1, Go and their association graph G,, X C V, is a
clique if and only if v(X) is a labeled isomorphism between G1 and Gs.

Proof We will prove both the implications by contrapposition. First we will prove
that if X is not a clique then v(X) is not a labeled isomorphism:

Suppose that X is not a clique. This means that it contains at least a pair of
vertices [(u1,v1), (u2,v2)] € X and [(wi,21), (w2, 22)] € X that do not satisfy either
or (C.6). Those vertices induce associations (u1,us), (v1,v2), (w1, w2) and (z1, 22)
in v(X). Suppose that is not satisfied, this means that some label correspondence
is not satisfied. For instance, this happens if I(u;) # [(u2), thus in this case is
not satisfied by the induced association (uj,u2). The same happens if I(v1) # [(va),
l(w1) # l(wz) or l(z1) # l(z2). Suppose that is not satisfied, this means that
some injection condition is not satisfiend. For instance, this happens if u; = w; and
Uy # wa, this in this case is not satisfied by the induced associations (u1, ug) and
(w1, ws2). The same happens for the others conditions. In both cases v(X) is not a
label isomorphism, which proves our claim.

Now we will prove that if v(X) is not a labeled isomorphism between G and Gs
then X is not a clique:

Suppose that v(X) is not a label isomorphism between G; and Gg. This means
that it contains a pair of associations (ui,u2) € v(X) and (wi,w2) € v(X) that do
not satisfy either or (C.2). For such matches to be in v(X) it means (by Def.
[6) that either [(u1,v1), (u2,v2)] € X or [(vi,u1), (v2,u2)] € X for some v; € V; and
vy € Vo and that either [(wi,21), (w2, 22)] € X or [(wi,21),(we,22)] € X for some
z1 € V1 and z9 € V5. Suppose that is not satisfied because [(u1) # l(u2) and that
((uq,v1), (ug,v2)) € X, in this case neither is satisfied and ((u1,v1), (ug,v2)) is
not adjacent to any other vertex in G4, thus X is not a clique in G,. Other cases that
do not satisfy are similar. Similar observations show that if is not satisfied
a pair of vertices not connected by an edge exist in X. In both cases X is not a clique
in G4, which proves our claim.
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Lemma 4 If X C V, is a maximal clique in G,, then v(X) is a mazimal labeled
isomorphism between G1 and Ga. Conversely, if M is a mazimal labeled isomorphism
between G1 and Go then e(M) is a mazimal clique in G,.

Proof We will prove both the implications by contrapposition. First we will prove
that if v(X) is not a labeled isomorphism then X is not a maximal clique:

Suppose that v(X) is a labeled isomorphism between G; and G but it is not
maximal. This means that the association (ui,u2) can be added to v(X) without
invalidating the conditions or . We know from Def. [1] that the model is
connected and from Def. [2| that for each part in the model at least one vertex in G;
and G4 is associated to the corresponding label by [. This guarantees that at least
(u1,v1) € Ey, (u2,v2) € Eg or (vi,u1) € E1, (v2,u2) € Es for some v; and vy with
l(v1) = l(v2). We know form Lemma 1 that X is a clique in G,. In addition, in either
cases the associations between those edges can be added to X without invalidating
, as the labelling correspondence for uj,us is guaranteed and vy, vo can be choosen
of the same class. Also will not be invalidated by the new associations, as if vy is
not yet in X any compatible vy will not invalidate it, otherwise the already present vy
can be choosen. This shows that X is not maximal, which prove our claim.

Now we will prove that if e(M) is not a maximal clique then M is not a maximal
labeled isomorphism.

Suppose that e(M) is a clique in G, but it is not maximal. Since by Def. 4| e(M)
contains all the edge associations between correspondent vertices in M if a new edge
association can be added to it without invalidating and , then it induces
new vertices associations in M that do not invalidate and (C.2)). Thus M is not
maximal, which prove our claim.

Theorem 2 Given two feature graphs Gi and Ga, each mazimal(mazimum) weight
labeled isomorphism M between them induces a mazimal(mazimum) edge weight clique
in Ga(G1,G2) and vice versa.

Proof Lemma 2 proves the maximality correspondence. In addition, Def. [4| states that
the weight of the label isomorphism M is exactly the sum of the weights assigned to the
edges of e(M) by the similarity function w. Thus, for each maximal(maximum) labeled
isomorphism M a maximal(maximum) edge weight clique e(M) of exactly the same
weight exists. In addition, it is easy to see that if X is maximal then X = e(v(X)),
thus for each maximal(maximum) edge weight clique X in Ga a maximal(maximum)
labeled isomorphism v(X) of exactly the same weight exists.
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